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Abstract

This paper presents new results concerning coincidence and
common fixed points in the setting of fuzzy Fréchet spaces, making
essential use of the triangular inequality inherent in such spaces.to
illustrate the applicability of the theoretical results, a concrete
example is provided. Moreover, the established findings are employed
to investigate a class of fuzzy differential equations, where we
demonstrate the existence and uniqueness of a common fixed point
for a triplet of operators. This fixed point corresponds to the unique
solution of associated fuzzy differential system. The proposed
approach opens new perspectives in the study of fuzzy dynamic
systems and may serve as a foundation for extending similar results
to broader classes of compatibility conditions and fuzzy differential
models.

Keywords: The triangular inequality, Coincidence fixed point, fuzzy Fréchet
spaces, and fuzzy semi-norm.
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1. Introduction

In recent years, the theory of fuzzy spaces has emerged as a fertile ground for
advancing functional analysis within imprecise or uncertain frameworks. The
foundation of this theory lies in the concept of fuzzy sets, first introduced by Lotfi A.
Zadeh [1], which provided a mathematical framework to represent vagueness and
ambiguity inherent in many real-world problems. Classical metric spaces, though
powerful, often fall short when dealing with such uncertainty. This gap has been
partially bridged by the development of fuzzy metric spaces, as initially introduced by
Kramosil and Michalek [2], and further formalized by George and Veeramani [3].
Howerver, deeder generalizations that extend beyond fuzzy metric structures
particularly toward topological vector space theory remain comparatively
underexplored.

Motivated by the need for such generalizations, our work investigates a new
direction: the incorporation of fuzzy norms into the framework of Fréchet spaces,
resulting in what we term a fuzzy Fréchet space [4], [5]. Unlike fuzzy metric spaces,
which focus primarily on pairwise distances under fuzziness, our approach explores the
topological and linear structure of infinite-dimensional spaces in a fuzzy environment.
This enables us to blend the rich topology of classical Fréchet spaces with the
continuity, and fixed point behavior in non-crisp settings (see [6], [7], [8], [9], [10],

[11]).

Building upon this foundation, the present work a new class of rational-type fuzzy
contractions characterized by weak compatibility among three self-mappings within the
framework of fuzzy Fréchet spaces. By utilizing the intrinsic triangular property of
these spaces, we establish key results concerning coincidence and common fixed points,
supported by relevant example. Moreover, we illustrate the applicability of the
proposed framework by addressing a system of fuzzy differential equations, thereby
demonstrating both the theoretical depth and practical utility of our approach. This
contribution is poised to advance the understanding of fuzzy dynamics and stimulate
further investigations across broader analytical settings.

2. Preliminaries

This section is devoted to presenting the fundamental notions, definitions, and results
that will be used throughout the paper. For the reader’s convenience, we include both
standard concepts and specific tools relevant to our main discussion.

Definition 2.1 [12]. Consider two self-mappings T; and T, on a nonempty set E such
that T;,T,: E — E. An element t € E is said to be a coincidence point of T; and T, if
both mappings yield the same image at ¢, i.e., T; (t)=T,(t). In such a case, the common
image y = T; (t)=T,(t) is referred to as a point of coincidence. The mappings T; and T,
are described as weakly compatible provided they commute at their coincidence point;
that is, whenever T, (t)=T, (t), then T, (T,(¢)) = T»(Ty(¢)) holds.
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Definition 2.2 [13]. A continuous t-norm is a binary operation #: [0,1] X [0,1] =
[0,1] such that

i.  # isassociative, commutative, and continuous.

.  v#l = v, and v, #v, < vs#v,, Vv, < v3, and v, < v, Where
vy V5, V3, and v, € [0,1].

Definition 2.3 [14]. Let E be a vector space that spans a field K. A fuzzy set n in
E x R is referred to as a fuzzy semi-norm on E if the following conditions are
satisfied:

i. n(,v)=0Vr, <0,
i. nor,vy)=n (T‘,%),VQ € K/{O} ,Vv, >0,
iii. nr,v)#n(s,vy) <n(r+s,v;, +vy),
iv. Vr € E,n(r,v,) isnon-decreasing w.r.t vy, vlliinmn(r, v;) =1, and
vllignon(r. vy) = 0.
Definition 2.4 [14]. For each r # 0 in a vector space E, the family G = {n;};¢; of

fuzzy semi-norms is said to be separating if at least one n € G and v; > 0 such that
n(r,vy) # 1 exists.

Definition 2.5 [4]. Suppose a vector space E is a complete fuzzy topological vector
space, and its fuzzy topology 7. is produced by a countable separating family of
fuzzy semi-norms G = {n;};¢;- In this case, it is called a fuzzy Fréchet space

(FF — Space).

In [4], the notions of fuzzy convergence, fuzzy Cauchy sequence, and fuzzy
continuity in FF — Space are discussed together with the building of fuzzy Fréchet
space.

3. Main results

This section presents the main theorem and result concerning coincidence and
common fixed points for three self-mappings in F — spaces , established under
rational-type fuzzy contractive conditions with weak compatibility.

Throughout this section, we assume that E is FF — space and that the fuzzy semi-
norm family G = {n;} ¢, yields the fuzzy topology of E, and # is a continuous t-norm
defined as v, #v, = v,.v,, Vv, v, € [0,1].

Definition 2.6. Let G = {n;};¢; is a collection of fuzzy semi-norms in FF — Space E
that is triangular if
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1 1 1
S | s(——1)+——1
s R S CaTsy s Y

Vr,s,u € E,v > 0,and Vn; € G.

Theorem 3.2. Let Ty, T,, T5: E = E be three self-mappings, that satisfy V r,s € E,

1
O AC S

< 1 1 1 1
=a (m(Tg(r) —T3(s),v) ) s (Q( Ty, Ty, T5,7,5,0) )
te ( Ni(T5(r) = Ty (1), v).n;(T5(s) — T»(s),v) )

N (T3(r) — T5(s), 2v).1;(T5(r) — T3(s),v).n;(T5(s) — T1(r), 2v) -1

€Y
Where
Q(Ty,T,Ts1,s,v)
= max{n;(T5(r) — T5(s),v),n;(T5(r) — T1(1), v),n;(T5(s)
= T5(5),v),ni(T5(s) = Ty (1), v), ;i (T5(r) — T,(s),v)},
(2)

For (c; + ¢, +c¢c3) <1with0 <cy,c,c53 <1l,v>0andVn; € G,and let G =
{ni} e, is triangular in E. If T;(E) is a complete subspace of E, and T, (E) U T,(E) c
T5(E). Then, there is point of coincidence in E for T;, T, and Ts.

Proof: Assume that r;, is an arbitrary point in E. Select a sequence {r;} in E using
condition T, (E) U T,(E) c T5(E) so that

T3(r2j41) = T1(12)) and T5(r2j42) = To(1r2j41),Vj 2 0.

@)

By (1), for v > 0 and Vn; € G,, now
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1 1

Ui(Ts(T2j+1) — T3 (7”2j+2)’ V) Ui(T1(7”2j) - Tz(T2j+1), v)

<

1 1
< -1+ -1
“a (Ui(T3(r2j) - T3(7'2j+1)» v) > “2 (Q(TIITZITS'r2j1r2j+1' v) )
+e ( 1:(T3(r25) = T1(r2;), v)-0i(Ta(r2j41) — Ta(r2j41),v)
*\ni(Ts(r2)) = Ta(rajan) 20)-1i(Ts (r2;) = Ta(rajun), v)- 1 (T3 (rajan) — Tu(r25), 20)
_ 1)

1 1
=c -1)+c -1
! (Ui(Ts(ij) - T3(7’2j+1)» 17) > ? <Q( T1,T;, T3, 12,7241, 17) >
+e (Tli(Ts (7”2j) — T3 (7”2j+1)’77)-77i(T3 (7”2j+1) - T3(7”2j+2)'v) 1)
3

Ni(Ts(r2)) — Ta(rajaz) 20)-mi(Ts (1)) = Ta(rajan) v)

(4)
Where

Q( T1,T5, T3, 125, T2j41 77)
= max{n;(Ts(r2;) — Ta(12j+1), v), n:(Ts(r2)
— T1(12),v), 0i(Ts(r2j41) — T2 (r2j41), ) i (T3 (r2)41)
= Tu (1)), v), (T3 (7)) = To(r2j41),v)}
= max{n;(Ts(r2;) — Ta(12j+1), v), n:(Ts(r2)
— T3 (T2j+1): 17)» Ui(T3 (r2j+1) — T3 (7’2j+2): 17)' m(Ts (7”2j+1)
= T3(12j41), v), (T3 (r2)) — Ta(r2j42),v)}
= maX{m(Ta (TZj) - T3(T2j+1)' 17)' m(T3 (7”2j+1)
= T3(r2j42),v), Li(Ts (1)) — Ta(r2js2) v)} = 1.

(%)
Now, using definition 2.3 (iii) and (4),(5), for v > 0, we get

1
-1
Ui(T3(T2j+1) — T3 (7”2j+2): V)

1
= <77i(T3(r21') — T3(r2j41),v) - 1)
+c ( i (YZj) ik (rz”l)' v). ni(T3(r21‘+1) - T (sz+2)’ v)
S\0i(Ta(r2)) = Ta(rajun), v) (T (rajan) = To(ragua), v)- mi(T(rag) = T (o), v)

_ 1),

Once simplified, for v > 0,

(6)
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1 1

—1<o( -
Ui(Ts(T2j+1) —T; (7”2j+2)’ V) ni(T3 (7"2j+1) - T3(7”2j+2), V)
where o = (¢; +¢3) < 1.

D,

(7)
Likewise, in light of (1), for v > 0,

1 1
—1= _
Ui(Ts(T2j+2) — T3 (7”2j+3)’ v) Ui(Tl(r2j+1) -T, (7”2j+2): V)

1 1
<c —-1)+c -1
! (Ui(Ts(ijﬂ) - T3(7”2j+2)’77) ) ? (Q( T1,T2:T3,7"2j+1:7”2j+2,77) )
g ( Ui(T3 (7”2j+1) - Tl(r2j+1)» 17)- Ui(Ts(T2j+2) - T, (7”2j+2): U)
’ m(Ts (7”2j+1) - Tz(T2j+2), 217)- Ui(Ts (7”2j+1) —T; (7”2j+2)' 77)- Ui(Ts(T2j+2) - T1(7”2j+1)' 277)
_ 1)

1 1
=c —1])+c -1
' (Ui(Ts(TZjﬂ) - T3(7”2j+2),17) ) ? (Q( T1,T2'T3,7"2j+1'7”2j+2,77) )
( ni(T3(T2j+1) - T3(7”2j+2), 77)- Ui(Ts (7”2j+2) - T3(T2j+3), U) )
+ c3 -1
m(Ts (7”2j+1) - T3(7”2j+2), 217)- Ui(Ts (7”2j+1) —T; (7”2j+2)' 77)

1

(8)
Where
Q( T3, T2, T3, 12541, 25425 17)
= maX{m(Ta (T2j+1) —T; (T2j+2)' U)' m(T3 (7”2j+1)
= Ty(1241),v), 0i(Ta(raj42) — T2 (12j42), 1), i (T3 (12)42)
—-T; (7"2j+1), 77)» Tli(T3 (T2j+1) - T, (7”2j+2), 17)}
= maX{m(Ta (T2j+1) —T; (T2j+2)' U)' m(T3 (7”2j+1)
— T3 (T2j+2): V); 77i(T3 (T2j+2) — T3 (72j+3): V)' Tli(T3 (T2j+2)
— T3 (T2j+2): V); 77i(T3 (T2j+1) —T; (72j+3): V)}
= maX{m(Ta (T2j+1) —T; (T2j+2)' U)' m(T3 (7”2j+2)
— T3 (T2j+3): V); 1:TIi(T3(T2j+1) - T3(7”2j+3): V)} =1L
)

Now, using definition 2.3 (iii) and (8), (9), for v > 0, we get
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1
(T3 (7”2j+2) — T3 (7”2j+3)’ V)

1
=a (Ui(T3(r2j+1) - T3(7'2j+2),17) - 1)
+c ( ”i(T3(r21+1) - T3(r2j+2)'v)-ni(Ts(r2j+2) - T3(T2j+3),v)
’ Ui(T3 (T2j+1) - T3(7'2j+2)'17)-77i(T3 (7'2j+2) - T3(r2j+3),v).m(T3 (T2j+1) - T3(T2j+2)rv)

_Q_

1

(10)
Then Once simplified, for v > 0,
1 1
—1<0( - 1),
ni(T3(7”2j+2) —T; (7"2j+3), V) ni(Ts (T2j+2) - T3(7”2j+3), V)
where 0 = (¢; +¢3) < 1.
(11)
Currently, based on (7), (11), and induction,
1 1
—-1< a< - 1)
Ui(T3(T2j+2) — T3 (r2j+3): V) ni(Ts (T2j+1) - T3(7”2j+2): V)
(= )
< o? 1)<
ni(Ts (7”2j) - T3(7”2j+1)' V)
. 1
S0'2]+2( —1>—>0,as'—>00.
n:(T5(ro) — T3(11), v) !
(12)
As a result, {T5; (rj)} is fuzzy contractive sequence in FF —space E,
lim n;(T5(r;) — T3(1j-1),v) = 1forv >0 (13)
]—)00

Given that G = {n;}¢is triangular. k > j > j,,
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1
) — Ty )

1 1
= <m(T3(rj) D) 1) * (m(T3(rj+1) ) 1)

1
tod (m(T3<r,-_1> ")) 1)

. 1
J _
=0 (Ui(T3(7”j) - T3(7}'+1)'17) 1)

+af+1< ! —1>+---
ni(T3 (Tj+1) - T3(7”j+2): V)

] 1
j—1 _
to <m(T3 D) = To), ) 1)

. i+1 j—1 1
< (o/+ 0/ 4t 0l (Ui(T3(T0) ~Ts(r),v) Y

<<Gj )( ! —1)—>Oasj—>oo_
~ \1=0/\ni(T5(10) — T3(r1), v) ’

(14)

This demonstrates that the sequence {T3(rj)} is fuzzy Fréchet-Cauchy sequence in
FF —space E and since T5(E) is a complete subspace of E. Thus, there are y and t in
E such that T3(rj) -y =Ts;(t)asj— oo, i.e.

}Lrgo iy — Ts(r),v) = ni(y — T3(t),v) = 1, forv > 0.
(15)
Giventhat G = {n;}¢,is triangular,

1
0 T, 0)

1 1
= <m(T3(t) Tyt D) 1) * (m(Ts(rz,-n) NN 1)'

forv > 0.
(16)

Now, using definition 2.3 (iii) and (1), (13), (15), for v > 0, we get

1 1 1
—-1= —1<c ( — 1) +
Ni(T3(r2j4+2)~T1(£).v) Ni(TL () =Tz (T2j41).) Y\ ni(T3(0)-T3(r2j41)v)

1
_ 1)
€2 (Q(Tl,TZ,T3,t,r2 +1) T
( 10i(T5(O)=T1 (O 0)0i(T3(r2j41)=Ta(r2j41)v) _ ><
3 Ni(T3() =Tz (r2j41),20) Mi(T3 () =T3(r2j41)v) (T3 (r2j41) -T2 (£),2v) -
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1 1
c — 1) c ( - 1)
1 (ﬂi(Ts(t)—Ts(T2j+1):V) te Q( T1,T2,T3,t,r2j+1,v) +
( ni(T3() =T (O0)1i(T3(12j41)~Ts(12j42)v) )
3 — -
i(T3(O)=T3(72j42),20) i (T3 (O =Ts(72j41)0) 1i(T3(r2j4.1) = T3(O).0) i (T3 (O-T1 (£),v)

cz( ! 1)asj—>00.

Q( Tl,TZITSrtrr2j+1'v) B
17)
Where

Q( Ty, Ty Ts, t,19j41, V)
= maX{m(Tg(t) - T3(7'2j+1)' v)» ni(T5(t) — T1 (), U),Ui(T3(7”2j+1)
—T, (7”2j+1)’ U)» Ui(T3 (7”2j+1) —Ti(®), V),Ui(T3(t) - TZ(T2j+1)’ 77)}
= max{r]l-(T3(t) - T3(7'2j+1)' 17): ni(T5(t) — T1(0), U),Ui(T3(7”2j+1)
— T3 (T2j+2): 17)» Ui(T3 (r2j+1) — T, (1), V):’?i(T1 (t)—T; (T2j+2): v)}
- max{1,n;(T3(6) —T1(t),v)} = Lasj - o

(18)
Now, using (17) and (18), for v > 0, we get
. 1 _
Jim sup (ni(T3(7’2j+2)—T1(t):V) N 1) =0v>0.
(19)

We obtain that n;(T5(t) — T, (t),v) =1 =y = T3(t) = T,(t) for v > 0 by using
(15) and (19) in (16) with j — oo. The next step is to demonstrate that y = T5(t) =
T, (t). Giventhat G = {n;} ¢, is triangular, then

1
O -TO0)

1 1
SQﬂxw—nmﬁam_q+Cmnmﬁo—n®mf*>

forv > 0.
(20)

Now, using definition 2.3 (iii) and (1), (13), (15), for v > 0, we get
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1 1
Tt T 0) - M) - Lo

1 1
= “a (ni(T3(r2j) - T3(t); U) - 1) T (Q( TlﬂTZ' T3, [ r2j' U) - 1)
+e ( 0i(T3(r2;) — Ta(r2), v). i (T3 (t) — T2(t),v)
’ Ui(T3 (T2j) —T,(1), 217)- m(T3 (TZj) - T3(7'2j)' v)- Tli(T3(t) - T1(7’2j)' 217)

)

1 1
= (1 -1 2 -1
=° (nz(Ts(rzj) —T3(8),v) > e <Q( Ty, Ty, T3, £, 75, V) )
+e ( Ui(Ts(TZj) —T; (7”2j+1): 17)- ni(T5(t) — T(¢),v)
’ m(Ts (7”2j) — T5(t), 277)- n:(T5(t) — T,(t), v). Ui(T3 (rzj) — T5(t), U)- Ui(T3 (t)—Ts (7”2j+1)' U)

1
—1>—>c2< —1>asj—>00.
Q( Ty, Ty Ts, t,135,v)

(21)
Where
Q( Ty, Ty Ts, t,135,v)
= max{r]l-(T3 (TZj) — T5(t), v),r]i(T3 (sz) -T; (sz)' V),Ui(T3 (t)
— T,(1),v), Ui(T3(t) -T; (TZj)» v)' m(Ts (sz) —T,(1), 17)}
= max{ni(T3 (ij) — T3(t), v),ni(T3 (TZj) —T; (T2j+1)r 17)' n;(T3(t)
— T, (), ), m;(T5(t) — T3 (T2j+1)' U)' 77i(T3 (7”2]‘) — Ty (8), 17)}
- max {1,7;(T5(t) — T>(¥),v)} =1
asj — oo,
(22)
Now, using (21) and (22), for v > 0, we get
Jim sup (Ui(Ts(Tz ,-+11)—T2(t),v) B 1) =0v>0
(23)

We obtain that n;(T5(t) — T,(t),v) = 1 = y = T5(t) = T,(t) for v > 0 by using
(15) and (23) in (20) with j — oco. With y = T5(t) = T,(t) = T,(t), we can conclude
that y is a point of coincidence of the mappings Ty, T, and T3 in E. m

Results 3.3. Let Ty, T,, T5: E — E be three self-mappings, that satisfy V r,s € E,
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1
T ACEAC NS

SC1( ! —1)+C2< - _1>'
n:(T3(r) — T3(s),v) Q(Ty, Ty, Ts,1,5,v)

(24)
Where
Q(T,,T,Ts71,s,v)
= max{n;(T3(r) — T5(s),v), n;(T5(r) — T (1), v), 0 (T5(s)
= T5(5),v),n;(T5(s) = Ty (1), v), ;i (T5(r) — T,(s),v)},
(25)

For (c; +¢) <1 with0<¢;,c; <1, v>0 and Vn; € G, and let G = {n;};¢; Is
triangular in E. If T5(E) is a complete subspace of E, and T;(E) U T,(E) < T5(E).
Then, there is a point of coincidence in E for Ty, T, and T5. Furthermore, if (T;, T5) and
(T,, T;) are weakly compatible pairings, then each of T;,T,,and T; has a single
common fixed point in E.

Proof. According to theorem (3.2)’s proof , y is a point of coincidence of the T;, T, and
T; in E. We now demonstrate that y is unique, let y; = T;(t,) = T,(t;) = T5(t,) for
some t; € E, where y, is another point of coincidence of the mappings Ty, T,, and T;
in E. Then, for v > 0, from (24),

1 1 1
o -y om0y O -G

ol ee( et )
ni(T3(t) - T3 (tl)ﬂ 17) Q( Tli TZ' T3' ¢, tlﬂ U)

(26)
Where
Q( Tl! TZ' T3! t' t1; 17)
= max{n;(T5(t) — T5(t1),v),n;(T3(t) — T1(t), v), n;(T3(t1)
— T5(t1),v), ;i (T5(t1) — T1(2),v),1; (T3 () — To(t1),v)}
= max{n;(T5(t) — T5(t1),v), 1} = 1.
(27)
So,
ndyihm)_]’S(h(mﬂxﬂjﬁﬁom)_]):=Cl(m@jhm)_])'
(28)
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for v> 0 and vn; € G. Since (1 —c;) # 0 for (¢; + ¢c;) <1, thus, n;(t —t;,v) =
1= t=ty,forv>0andVvn; € G. A single common fixed point of the mappings
T;,T,,and T; can be obtained by applying Proportion(1.4) in [10] and the weak
compatibility of the pair (T;, T3), (T, T5). Assuming there is m € E such that m =
T;(m) = T,(m) = T;(m). Therefore, for v >0 and Vvn; € G, we obtain that
nt—-mv)=1=t=m.nm

Example 3.4. Let E = [0, 1] be a FF —space with fuzzy semi-norm n: E X (0,) —
[0,1] has been defined by

v
v+ |r|

n(r,v) = ,Vr € E,and v > 0.

Then, demonstrating that 7 is triangular is simple. Let's define the mappings
Ty, T, Ts: E = E as

T, (r) = T,(r) = ;‘—rand Ty(r) = Zg,w €E.

r+9
And so we have

1
n(T(r) = T,(s),v)

1| 4r 4s
vi3r4+9 3s+9

1
1= ;|T1(T) —T,(s)| =

B 1| 36r — 365 - 1 |36r — 36S| _ 2|T3(r) — T3(s)
T vlBr+9Bs+9l T v 81 3 v

o N S,
=— —1),forv )

3\n(T5(r) — Tz(s),v)

Therefore, in FF —space E, the weakly compatible fuzzy contractive requirement is
satisfied by Ty, T,, T5: E — E, that is,

1 2 1
NHO-Lem LT E(n(Tscr)—Tg(s>,v) - 1)' forv > 0.

(29)

The value of the second term, which appears in (24), is then determined. Next, we
have the cases listed below:

1. If for t > 0, the maximum value of Q( Ty, T,, T, 1,s,v) = n(T5(r) — T5(s), v),
for v > 0. Then,

1 1

1 2
oTinTirss 1= SN 1= - |T5(r) — T5(s)| = -~ |r —s|, forv > 0.

(30)

2. If for t > 0, the maximum value of Q( Ty, T, Ts, 7,5, v) = n(T5(r) — T, (r), v),
for v > 0. Then,
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1 1

1
Q( T1,T2,T3,T',S,U) N 1 B 77(T3 (T) _Tl (T),‘U) N

1==|T5(r) = Ty()| ==

v

2r 4r

3 3r+9

2
1|20rr) <Z(@?+71), forv>0.
vl 3r+9 9v
(31)
3. If for t > 0, the maximum value of Q( Ty, T, T5, 7,5, v) = n(T3(s) — T,(s),v),
for v > 0. Then,
1 1 1 112s 4s
Q(Ty Ty Tar,sv) 1= N(T5(s)-To(s)v) =3 IT5(s) = To(s)| = vi3  3s+o|l
2
12st+s) <2 (s2+5s),forv>0
vl 35s+9 9v
(32)
4. If for t > 0, the maximum value of Q(T;,T,, Ts, 7, s,v) = n(T3(s) — T, (r), v),
for v > 0. Then,
1 1 1 1|2s 4r
Q(TyToTarsy) 1= N(T3()-Ti (M) 1=3 IT3(s) = T ()| = v13  3r+9l
L |Ars3s—2n) S£|r5+35—2r|,f0rv >0
v 35+9 9v
(33)
5. If for t > 0, the maximum value of Q( Ty, T,, T3, 1,s,v) = n(T5(r) — T,(s), v),
for v > 0. Then,
1 1 1 1|2r 4s
mwuamw_l_nmwwmnw_l_ﬂnoq_n“ﬂ‘EE"kﬁg—
L |Ars3r=2s) Silrs+3r—25|,f0rv >0
v 3r+9 v
(34)

Therefore, when (29) is added to all the cases and contacts ¢; = g and c, = ; we have

1
T AOEIACH S

< 2 1 1 2 1 {

= §<n(r3(r) T o)) ) + 7(@( T, Tors,0) )
(35)

Where

Q(T,,T,Ts1,5s,v)
= max{n(T5(r) — T5(s), v),n(T5(r) — T, (1), v),n(T5(s)
— T5(5),v),n(T5(s) — Ty (), v),n(T3(r) — Tp(s),v)},for v > 0.

(36)
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Therefore, for ¢, = %and Cy = % all of hypotheses of result (3.3) are satisfied, and the
mappings Ty, T, and T have a single common fixed point, specifically 0.

4. Application

To support and demonstrate the key findings of our work, we provide an
application of fuzzy differential equations (FDE’s) in this section.

Let H denote the set of all fuzzy subsets m defined on the real numbers R. The
(FDEs) we have are as follows.

m" () = g(t,m(t),m' (), t € [cy,c,),

m(t;) = my,m(ty) = my,ty,t; € [c1, ¢,

(37)
Where the function g: [c;, ¢;] X H X H — H is continuous. The following integral
equation is equivalent to this problem
t2
m(©) = [ 09 (¢(5,m),m'@)) 49 + (o),
t1
(38)
Green’s function U is provided by
t,—t)(¥ —t
(t2 - )_(t D p<o<ist,
U(t,9) = z
’ t,—9)(t—t
(£ — 9)( 1),t1$t319$t2.
t, —t;
(39)
Additionally, y(t) satisfiesy'" = 0,y (t;) = my,Y(t,) = m,. In this case, we
remember a few characteristics of U, including
f UGt 0)ae < L2
tl 8
2 t, =t
J U:(t,9)d9 < .
%1
(40)

Let E = C([cq, c,], H) be a FF —space with triangular fuzzy semi-norm
n: E X (0,00) — [0,1] has been defined by
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n(r,v) =——,Vr € E,and v > 0, (41)

v
v+|r|

Where CY([cy,c,], H) represent the set of all functions from [c;, c,] to H that possess
continuous first derivatives throughout the interval [cy, ¢, ].

We now use result(3.3) to demonstrate the current outcome for the boundary value
problem mentioned above.

Theorem 4.1. Let ¢4, ¢,: [c1,¢,] X HX H —» Hand let 36,y € (0,1) with§ <y
such that vim, s € E, satisfies

|g:(t. m(D), m' () — g2(t,s(), s' ()] < 8lm(t) —s(@®)| +y|m'(®) —s'(®)]. (42)
Let 36 suchthat 0 < 8 < 1 and

|m(t) —s(t)| = Im —s| < OR(Ty,T,, T3, m,s),

(43)
Where
R(Ty, Ty, T3,m,s) = max {|Tsm — T3s|, |Tsm — Tym|, |T3s — T,s|, |T3s —
Tym|, |Tsm — T,s|}.
(44)
Thenin E = C1([t,, t,], H), the integral equations
m(e) = ]t U ) (21(9,m(®),m'(9)) ) dd + (), t € [c1, 5
1
ta
s(©) = ]t Ut,9) (g2(9,509),5'(9))) a9 + (0), t € [e1, 5],
1
(45)
admit a uniqgue common solution.
Proof. Let E = C([ty, t,], H) with semi-norm
P(m) = max (SIm()] +yIm'(©)])
(46)

The space E = C1([ty,t,], H) is Fréchet space. At this point, we define the operators
T,,T,,T;:E - EasT;(m) = A,, + Y, T,(m) = B,, + Y, T3(m) = m,and T5(s) = s,

(47)
Where
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an=| " U69) (g (8,m(9), m ) @6, € e €3]

1

B = [, U 9) (92(9,509),5'(9))) db,t € [c, 2],
(48)

Where ¢, g, € C([c1,¢c,] X Hx H,H),m,s € C*([cy,c,],H),and ¢ €
C([cy, 2], H).

Then by the characteristics of U, and from (46), (47) and applying the hypothesis, we
get

ty

ITym(t) — Tos(®)] < f U, 9)1|g1 (8, m9), m'(9)) — g2(9,5(9), ' (9))|dd

21
b2 ty —t1)? P(m —
< P(m—5s) IU(t,ﬁ)IdﬁS¥P(m—s)S(st),

|(Tym)’ () — (Tys)' (0)]
< f 1U(t,9)|g1 (9, m(9), m' (9)) — g,(9,5(),s"(9))|d9
t

1
t2 t, —t; P(m—s)
<Pm-—s)| |UA(t,9)|dI9 < 5 P(m —s) ST.
ty

(49)
Now, from (42), (46), and the above, we have that
P(Tim —Ts) = max (8|Tim(t) = Tos (D] + yI(Tim) (®) = (T5) (D))
6P(m— s) +yP(m— s) -

= 8 2 —(g”)P(m_s)'
(50)
By (43), we now have that
P(Tym — T,s) < (gy> P(m —s) < oX(Ty,T,, T3, m,s),
(51)

Where g = gye < 1. We now apply result (3.3) to show that T;, T, and T; admit a

unique common fixed point m,; € E, i.e. my; € E is a BVP solution. There are the
cases we have.

i, In(44), if
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N(Tlr TZr T3, m, S)
= max{|T3m — T3s|, |[Tsm — Tym|, |T3s — T,s|,|T3s — Tym|, [Tym
- Tzsl} = |T3m - T3S|.

Then from (41) and (51), we get

1 1= P(Tlm - TZS) < QN(TLTZ'T3I m, S) _ Q|T3m - TBSI
n(Tym — T,s,v) B v - v - v

—¢ (n(T3m i TS, v) 1)'
(52)

Thus ————— — 1 SQ(; 1),forv>0,

n(Tym-T,5,v) N(Tsm-Tssp)
(53)

vm,s € E. Accordingly, the operators T;,T, and T; meet all the requirements of
result (3.3) with ¢ = (c¢; + ¢,) as given in equation (24). As aresult, Ty, T, and T
admit a unigue common fixed point m, € E, i.e. m; € E is a BVP solution.

i In(44), if

X(T;,T,, T3, m,s)
= max{|Tysm — Tss|, |Tsm — Tym|, |T3s — T,s|, |T3s — Tym|, | Tsm
- Tzsl} = |T3m - Tlml.

Then from (41) and (51), we get

1 1 _ P(Tlm - Tzs) < QN(Tl, Tz, T3, m, S) _ Q|T3m - T1m|
n(Tym — T,s,v) B v - % a %

1
= - 1),
¢ (n(T3m —Tym,v)

(54)
1 1
ThUSm—l < Q(m— 1),f0rv > O,ande,s € E.

(55)

In a similar manner, we arrive at the following three cases:

i, In(44), if
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N(Tlr TZr T3, m, S)
= max{|T3m — T3s|, |[Tsm — Tym|, |T3s — T,s|,|T3s — Tym|, [Tym
- Tzsl} = |T3S - Tzsl.

Then from (41) and (51), we get

1

1
n(Tym-Tys,p) I<e (n(T3s—Tzs,v) - 1)’ forv>0,andvm,s € E.

(56)

iv. In(44),if

X(Ty,T,, T5,m,s)
= max{|Tysm — Tss|, |Tsm — Tym|, |T3s — T,s|, |T3s — Tym|, | Tsm
- Tzsl} = |T3S - T1m|

Then from (41) and (51), we get

: 1SQ(; 1),forv>0,ande,seE.

n(Tym-Tys,v) o 1n(T35—-Tym,v) -
(57)
v. In(44), if

X(Ty,T,, T5,m,s)
= max{|Tysm — Tss|, |Tsm — Tym|, |Tss — T,s|,|Tss — Tym|, |Tsm
_— Tzsl} == |T3m _— Tle.

Then from (41) and (51), we get

1
Nn(Tym—Tys,v)

1

—_— 1),forv > 0,and Vm,s € E.
N(T3m—T,5,v)

1< Q(
(58)

Therefore, based on (55), (56), (57), and (58), it is evident that the operators T;, T, and
T5 fulfill all the assumptions outlined in result (3.3), taking ¢; =0, and ¢ = ¢, as
specified in (24). Consequently, there exists a unique common fixed point m, € E for
these operators, which corresponds to a solution of the boundary value problem
presented in (37).

5. Conclusion

In this work, we have introduced and explored a novel class of rational type weakly-
compatible fuzzy contractions involving three self-mappings in fuzzy Fréchet spaces.
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By leveraging the triangular property of fuzzy Fréchet spaces, we established several
fundamental results concerning coincidence points and common fixed points, supported
by an illustrative example. Furthermore, we demonstrated the practical relevance of our
theoretical framework by applying it to a class of fuzzy differential equations, where
we proved the existence and uniqueness of a common fixed point corresponding to the
solution of the system.

This study not only enhances the understanding of fixed point theory in fuzzy settings
but also opens up promising pathways for future research. The developed methodology
can be extended to broader contexts involving different types of fuzzy contractions and
compatibility conditions, as well as diverse forms of differential equations. As such,
the findings of this research are expected to contribute significantly to the ongoing
development of fuzzy analysis and its applications in mathematical modeling and
dynamic systems.
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