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Abstract 

Cloud computing has transformed the modern world of computing by enabling 

the provisioning of resources that are on demand and scalable. Nevertheless, the issue 

of efficient resource allocation persists due to unpredictable demand fluctuations and 

heavy duties. This paper investigates the allocation of cloud resources through the use 

of deep learning (DL) models, specifically Convolution Neural Networks (CNNs), 

Gated Recurrent Networks (GRNs), and Long Short Term Memory (LSTM) 

networks. CNNs acquire spatial patterns from cloud workload data, while GRNs 

acquire short-term resource usage dependency patterns. By acquiring long term 

patterns in work load variation, LSTMs further improve the accuracy of their 

predictions. Our proposed framework optimizes cloud resource allocation using these 

models, enhancing overall system performance, reducing energy consumption, and 

reducing latency. Experimental evidence indicates that our proposed deep learning 

framework is more precise and adaptable than conventional methodologies. 
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السحابة باستخدام إطار عمل قائم على التعلم  تحسين تخصيص موارد 
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  الخلاصة 

أحدثت الحوسبة السحابية تحولاً جذرياً في عالم الحوسبة الحديث، إذ أتاحت توفير موارد قابلة للتوسع عند      

المتوقعة والمهام   الطلب غير  تقلبات  قائمةً بسبب  للموارد  الفعاّل  التخصيص  الطلب. ومع ذلك، لا تزال مشكلة 

(، DLة البحثية في تخصيص موارد السحابة من خلال استخدام نماذج التعلم العميق )الشاقة. تبحث هذه الورق 

(، وشبكات الذاكرة طويلة  GRNs(، والشبكات المتكررة المبوّبة )CNNsوتحديداً الشبكات العصبية التلافيفية )

( المدى  قصيرة  العمل  LSTMالمدى  عبء  بيانات  من  مكانية  أنماطاً  التلافيفية  العصبية  الشبكات  تكتسب   .)

أنماط اعتماد على استخدام الموارد قصيرة المدى. ومن خلال اكتساب    GRNsالسحابي، بينما تكتسب شبكات  

اتها. يحُسّن  أنماط طويلة المدى في تباين عبء العمل، تحُسّن شبكات الذاكرة طويلة المدى قصيرة المدى دقة تنبؤ

إطار عملنا المقترح تخصيص موارد السحابة باستخدام هذه النماذج، مما يحُسّن الأداء العام للنظام، ويقُلّل استهلاك 

الطاقة، ويقُلّل زمن الوصول. تشُير الأدلة التجريبية إلى أن إطار عمل التعلم العميق المُقترح لدينا أكثر دقةً وقابليةً  

 التقليدية. للتكيف من المنهجيات
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1. Introduction 

Cloud computing has transformed the face of information technology (IT) by offering 

elastic, dynamic, and cost effective ways for individuals and businesses to access computing 

resources [1-5]. Because cloud computing can offer on demand resources like storage, 

computing power, and applications, consumers can carry out activities without the complexity 

of dealing with the hardware. However, as cloud based services continue to gain popularity; 

effectively managing resource allocation remains an ongoing concern.  

The concern becomes more complicated considering the variable nature of workloads, 

varied application needs, and real time scale requirements [6]. Traditional cloud environments 

use predefined rules or heuristics for resource allocation, which fails with massive, complex, 

and dynamic data. Legacy approaches struggle to handle cloud applications’ dynamics, 

resulting in resource underutilization, delay, and over provisioning. Higher expenses, lost 

energy, and ineffective system performance result from inefficiency. Intelligent, adaptive 

systems that scan, forecast, and dynamically provision resources according to changing needs 

in real time are being promoted to address these concerns [7], [8]. Cloud computing relies on 

virtualization to create virtualized representations of physical hardware for efficiency, 

scalability, and flexibility. It revolutionizes IT resource deployment and consumption by 

allowing numerous virtual machines on a single physical machine [9], [10], optimizing system 

performance, energy consumption, and data centre resources [11], [12]. Deep learning (DL) is 

better at comprehending and processing complex, high dimensional data. Deep learning has 

been applied to cloud computing resource management. CNNs, GRNs, and LSTM networks 

have extracted complex patterns and relationships from huge data. CNNs can identify 

geographical patterns and properties of data, making them ideal for observing and analyzing 

cloud resource utilization patterns. GRNs are suitable for temporal modeling of dependencies 

and correlation of short term resource use data. Finally, LSTMs learned long term 

dependencies, which is needed to accurately forecast resource demands from previous data 

[13], [14]. 

This article investigates the utilization of deep learning models in the Cloud Resource 

Allocation Strategy. We concentrate on the real time evaluation and management of resource 

requirements by employing CNNs, GRNs, and LSTMs. The proposed framework is designed 

to improve traditional methods by offering a system that is intelligent and adaptable, capable 

of dynamic allocation in response to changing conditions. In addition to increasing 

performance and reducing operating costs, this function also emphasizes the reduction in 

energy consumption, an important factor in the cloud calculation environment where energy 

efficiency is an important indicator of economic and environmental stability. We aim to 

guarantee that cloud services are energy-efficient and cost-effective and cannot only be 

scalable by optimizing resource allocation in response to immediate demand but also by 

guessing future resource requirements. 

Many research investigations have found that DL approaches can provide intelligent and 

adaptive resources to address such difficulties [15], [16]. Future predictions and data driven 

decisions can be made using observed and unsecured learning, historic billing habits, and 

resource usage trends. Using the ML model, cloud providers may estimate resource demand, 

dynamically assign resources, and change. 
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2. Deep Learning Applications 

Deep learning (DL) is a technique to realize artificial intelligence (AI) by realizing 

multilayered neural networks and it requires computational resources and massive training 

data. Some existing research points out that it is possible to find and deploy Deep Learning 

models to learn new updates when it is built on existing networks. However, each data holder 

only has some input data and a local model learned from it. It is the same concept as federated 

learning, and uses this paradigm to propose a novel decentralized Federated Transfer Learning 

framework using block chain that does not involve the data exchange itself. Learning tasks of 

the new example classes can be obtained in this framework, and learning the variety of each 

class is a correct example. The PLN and the SLN use the data holders to learn the class change 

of the pre trained large network through the proposed block chain-based protocol. Moreover, a 

class wise sampling procedure is proposed to prevent the one data holder from acquiring 

general knowledge about the new classes. Wide and diversified applications in terms of the 

number of different approaches with Deep Learning (DL) associated with block chain 

technology enhance the secure distributed computation's train ability or assist the context of 

DL, namely (1) real time arrhythmia classification and (2) miner node selection during block 

generation [17]. DL is as an evolving subset of Machine Learning (ML) plays a vital role due 

to a state-of-the-art performance in a variety of applications. It becomes increasingly complex 

to deliver high quality scaling models in place of very expensive human experts. Although it 

has achieved large success at different levels for several applications, the feature extraction 

issue is common. It is challenging when making it similar to the output task, and it requires 

many additional tasks or a lot of efforts with lots of examples until good results are achieved. 

When learning the representation, the model is applied following standard training methods 

and learning about the data. This should produce some semantically meaningful parameters 

used as a base for the task in order to extract the HA. Beyond extracting features, further 

supervised learning across steps is required. Distributed representation of words using less-

dimensional vectors called word embeddings. These are learned based on the local context 

using shallow architecture. Alternative to model pre-training, the feature representations can 

be learned using self supervising learning [18]. 

Deep learning (DL) has revolutionized artificial intelligence (AI) by allowing machines to 

automatically learn complex patterns, interdependencies, and relationships from vast amounts 

of raw data without the need for human feature extraction [19]. DL is powering AI research 

and applications by automatically extracting complex patterns in data, revolutionizing 

healthcare, finance, autonomous systems, and robotics. Gated Recurrent Units (GRU), 

Convolution Neural Networks (CNN), and Long Short Term Memory (LSTM) networks are 

some of the most popular deep learning architectures that solve specific ML issues [20]. 

Convolution Neural Networks (CNNs) are a cornerstone of face identification, medical image 

analysis, autonomous vehicles, and surveillance tracking because of the fact that they are very 

good at picking up visual patterns and spatial hierarchies in data through convolution layers. 

Long Short Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) are 

specifically designed to handle sequential data and succeed at time related tasks like NLP, 

speech recognition, sentiment analysis, and time series forecasting. They use gating 

mechanisms to remember and forget selectively in order to keep long term data sequence 

dependence in the traditional recurrent neural networks (RNNs) with vanishing gradients. Deep 

learning algorithms process structured and unstructured data and enhance AI powered 

applications like virtual assistants, real time language translation, AI powered medical 
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diagnosis, and financial risk analysis due to their longevity. DL has also progressed the creation 

of deep fakes, visual style transfer, and music generation. Greater processing power, massive 

data sets, and optimization methods power deep learning’s unabated growth, transforming 

artificial intelligence. Thus, modern AI research relies on deep learning to advance 

reinforcement learning, explainable AI, and human computer interaction, impacting intelligent 

automation and decision making systems in industries (see Figure 1). 

 

 

Figure -1 Deep Learning architecture 

 

3. Deep Learning (DL) Methods 

The development of deep learning has revolutionized artificial intelligence by allowing 

robots to learn difficult patterns and associations from data. Gated Recurrent Units (GRU), 

Convolution Neural Networks (CNN), and Long Short Term Memory (LSTM) are the three 

types of deep learning architecture used most frequently. Computer vision, natural language 

processing (NLP), and time series forecasting are all areas that heavily rely on the application 

of these models because they can process all forms of data and tasks [21].   

3.1 Convolution Neural Networks (CNNs) 

CNNs are specially crafted networks to process spatial and image data. They possess 

convolution layers, which apply filters to select characteristic features such as shapes, textures, 

and edges [22]. CNNs compare well with ordinary fully connected networks in that they reduce 

parameters using shared weights, which is appropriate for large sized image recognition 

problems. CNNs find extensive applications in image classification, face detection, object 

detection, and medical imaging. They also enable applications like autonomous vehicles and 

video processing [23]. 

3.2 Long Short-Term Memory (LSTM) Networks 

LSTM is a variation of Recurrent Neural Network (RNN) which has specifically been 

developed for application in sequence data such as text, speech, and time series data. RNNs 

suffer from the vanishing gradient problem which detains RNNs from memorizing long term 

relationships. LSTMs have universal applications in speech-to-text recognition, machine 

translation, chatbots, prediction of financial output, and sentiment analysis. As they have to 
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maintain the relationships due to the long term memory, they are highly capable to handle 

complex sequence tasks [24]. 

3.3 Gated Recurrent Unit (GRU) 

GRUs are analogous to LSTMs but with fewer computations and simpler to understand. 

GRUs can be applied in natural language processing (NLP), time series prediction, and speech 

recognition. GRUs gives the same kind of output as LSTMs but with fewer training periods 

and parameters. Thus, they are suitable for use in real-time when there is a problem of lightness 

of computation [25]. 

There are many applications of DL techniques. For image based solutions, CNNs are 

suitable, whereas LSTMs and GRUs are suitable for sequence data. Whereas LSTMs are better 

suited for longer sequences, GRUs need less work in terms of processing and are faster 

compared to LSTMs. Deep learning, being based largely on such architectures, allows for 

artificial intelligence application spanning a larger timeframe. 

Figure 1 shows a two stage procedure for training and testing deep learning models, 

including CNNs, LSTMs, GRUs, and ensembles. These models are used on a dataset 

combining Google Cloud Jobs (GoCJ) and Monte Carlo simulation data. The solution 

addresses a difficult resource allocation and workload forecasting challenge in virtualized 

cloud systems. The Google Cloud Jobs data set accurately depicts cloud infrastructure usage. 

Monte Carlo simulation is employed to model and simulate unpredictable scenarios or system 

reactions. Deep learning models identify patterns from this data during training to create long 

term predictions about system behavior and resource requirements. The evaluation method 

tests these models to see how well they estimate workload demands and distribute resources 

appropriately in a cloud system. This approach determines which resource forecasting models 

are most predictive, accurate, and operationally effective.  

 

4. Methodology  

The proposed framework employs deep learning techniques for cloud workload prediction and 

resource optimization. It follows a structured approach that includes data generation, 

preprocessing, model training, and performance evaluation. Our Proposed Framework is listed 

as below: 
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Figure – 2 Proposed Framework by applying deep learning with cloud 

 

4.1. Phase 1: Data Generation 
4.1.1. Google Cloud Jobs Dataset & Monte Carlo Simulation: 

 A Monte Carlo Simulation is incorporated into the dataset, which is obtained via Google 

Cloud Jobs (GoCJ). This simulation is used to build a realistic sales dataset, which is then saved 

for future study. This dataset is made up of a number of different jobs, each of which is uniquely 

recognised by an identifier (for example, 83000, 83009, etc.). The parameters are (arrival time, 

standard deviation and mean) this makes it possible to easily track and reference individual 

tasks within the dataset. 

4.1.2. Virtual Machine (VM) Workload Data Collection: 

The tasks are distributed across multiple Virtual Machines (VMs), specifically labeled as 

VM1, VM2, and VM3, each of which plays a critical role in executing and processing the 

assigned workload. To monitor and evaluate the performance of each VM, several key metrics 
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are recorded throughout the execution of tasks. These metrics include the overall load on the 

VM, which reflects the total processing power being used at any given time; make span (MS), 

which is the total execution time required to complete a task or set of tasks; memory loading, 

indicating how much memory the VM utilizes during task execution; idle VM time, which 

measures the periods when the VM is not in use or underutilized; and throughput, which tracks 

the amount of work completed by the VM in a given time frame. By gathering these 

performance metrics, a detailed understanding of the resource demands and efficiencies of each 

VM is achieved. The data collected from each VM is stored separately as VM1 Data, VM2 

Data, and VM3 Data, making it possible to analyze the performance of each machine 

individually. Once the data from the three VMs has been captured, it is then integrated and 

combined into a single comprehensive Collocation Dataset. This aggregated dataset allows for 

further processing, such as analyzing how tasks can be better distributed across VMs, 

identifying potential bottlenecks, optimizing resource allocation, and improving the overall 

efficiency of cloud infrastructure, particularly in a virtualized environment where resource 

management is crucial for maintaining performance and minimizing cost. 

 

4.2. Phase 2: Data Processing & Model Training 

4.2.1. Data processing Training:  

Pre-processing of data begins with outliers, where the abnormalities in the data are 

identified and removed to ensure that the model is trained using clean and reliable data. 

Subsequently, data is normalized, i.e., scaled to bring all values to a consistent range, so 

features with larger numerical ranges do not dominate the model’s learning process. 

Categorical data is then converted into numeric form so that non numeric attributes become 

model training worthy. The preprocessed dataset is then split into three datasets: training set 

(80%), which will be used to train the model; validation set (20%), for model tuning and hyper 

parameter optimization, with the preprocessed data, various deep-learning models are trained. 

They are CNN (Convolution Neural Network), which is largely used for extracting spatial 

features; LSTM (Long Short-Term Memory), a recurrent neural network (RNN) model that is 

used for sequence-based prediction handling; and GRU (Gated Recurrent Unit), an optimized 

version of LSTM, which is utilized for sequential data. 

4.2.2. Testing & Performance Evaluation 

Once the models are trained, they undergo a rigorous performance testing phase to verify 

whether they can make accurate predictions. During this phase, classification techniques are 

employed to quantify the accuracy of the model, helping determine how accurately each model 

can classify data and predict results based on the given input features. Various performance 

measures such as precision, recall, and F1-score can be measured to provide a comprehensive 

study of the performance of each model. On the basis of the experiments, the optimal model 

that performs with the best accuracy and reliability is chosen, which also possesses the greatest 

potential to generalize new, unseen data and perform best in real world applications. This 

model is therefore selected to deploy. 
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5. Experimental and Results 

5.1 Datasets 

The GoCJ dataset is a valuable resource for cloud work- load prediction and resource 

allocation. It offers differing job sizes that can be generated through formulas in an Excel 

document as shown a table 1. Monte Carlo simulation introduces randomness to the dataset to 

offer more representative cloud workload environments. The data set is crucial for task 

distribution between virtual machines (VMs) in a manner that maximizes the allocation of 

resources through key performance indicators such as virtual machine selection, load 

distribution, make span, throughput, wait time, and system load. It maximizes task scheduling, 

prevents VM overloading, and optimizes cloud system performance. 

5.2 Convolution neural network (CNN) 

CNNs are best at local spatial feature extraction a dropout layer of 0.3 is employed to reduce 

over fitting by randomly dropping 30% of the neurons while training. Next, the model applies 

a 1D convolution layer with kernel size 3x64x64 and utilizes 64 filters. Here, ReLU activation 

is employed as well to enable the model to learn sequence pattern features. The following 

MaxPooling1D layer helps down sample by a factor of 2, lowering dimensions without losing 

the most important features. After the convolution process, two fully connected (dense) layers 

are employed in the model. The first dense layer has 128 units using the ReLU activation, 

 

 
Figure -3 Convolution neural network (CNN) 

5.3 Long Short Term Memory (LSTM)  

LSTM layers to take advantage of the power of both models in processing sequential data 

whereas LSTMs can model long-term temporal dependencies and thus the mix here is very 

much suitable for applications involving both spatial and sequential data, such as time series 

prediction and sequence classification. The sequential data is input to the input layer, which is 

then input to the LSTM layer. The LSTM layer is configured with a kernel size of 1x256 and 

recurrent kernel size of 64x256 to learn temporal dependencies in the data. It has the ReLU 

activation function for the kernel and the sigmoid activation function for the recurrent kernel 

with return sequences equal true so that the LSTM outputs a sequence of values to be processed 
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further. Following the LSTM, a dropout layer of 0.3 is employed to reduce over fitting by 

randomly dropping 30% of the neurons while training. 

 
Figure -4 Long Short Term Memory (LSTM)  

  

5.4 Hybrid GRU + CNN Model for Sequential Data 

The model presented combines GRU and CNN to process sequential data efficiently. GRU 

is a variant of LSTM and is highly efficient in processing temporal dependencies in sequential 

data, while CNNs are optimized to extract local features. Combining both components, the 

hybrid model becomes highly effective in operations such as time-series prediction, speech-

to-text, and sequence classification. The architecture begins with an input layer accepting 

sequential data. Then comes the GRU layer where the kernel size is 1x192 and recurrent kernel 

size is 64x192, so that the GRU can capture temporal relationships within the sequence. The 

GRU uses ReLU as the activation function on the kernel and recurrent activation as sigmoid. 

The model is initialized with return_sequences=True so the GRU will return the entire 

sequence of data rather than the final state, that way all the information from each time step 

will pass through to the subsequent layers. A Dropout layer with dropout=0.3 is then employed 

to combat over fitting by randomly disabling 30% of the neurons when training. Next, a 1D 

Convolution layer is introduced with kernel size 3x64x64 and 64 filters. In this case, the ReLU 

activation is employed, and the convolution layer is followed by MaxPooling1D. The max-

pooling operation reduces the sequence dimensionality by half; with pool size 2and strides 2, 

so that the most important features are retained. The second Dropout layer at a rate of 0.3 is 

employed to again prevent over fitting. The Flatten layer is then applied to flatten the data into 

a 1D vector. The model then flows through two dense layers. The first dense layer contains 

128 units with the activation function being ReLU. The second dense layer has 5 units with 

softmax activation, giving a probability distribution over five target classes. Figure 4 present 

combining the GRU's temporal dependency learning ability with the CNN's local feature 

learning capability, this hybrid model is able to effectively learn both the sequence level and 

local feature patterns of the data and is thus suited to a large variety of sequence-based 

prediction problems. 
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Figure -5 Represents combining a GRU with CNN 

Figure 6 presents a 3D scatter plot illustrating the relation- ship between Job Size, Arrival 

Time, and Service Time for 10,000 tasks. The X-axis represents the job size in megabytes, the 

Y-axis denotes the arrival time in seconds, and the Z- axis indicates the execution time required 

for each task. The distribution of data points visually captures the correlation between these 

parameters, making the plot useful for analysis, interpretation, and statistical evaluation of task 

execution patterns. 

Figure 3 presents two plots depicting the job size distribution and task arrival times. The 

left plot highlights job sizes, which are primarily concentrated around lower values, while the 

right plot visualizes task arrival times along with their unique IDs. These plots offer valuable 

insights into task frequency, size distribution, and scheduling patterns within the dataset. 

5.5 Evaluation Metrics 

In many fields where precise predictions are crucial, performance measurements are needed 

to evaluate categorization models. Precision is the computation of, from all the projected 

positive examples, precisely identified positive ones. When the cost of false alarms is high, 

precision a gauge of the model’s capacity to prevent false positives is more important. 

Sensitivity or true positive rate, sometimes known as recall, gauges the model’s identification 

of the true positive case count. It shows how well the model detects positive examples and is 

therefore important when, e.g., disease diagnosis misses a positive case has major 

repercussions. The harmonic mean of memory and accuracy, the F1-score offers a fair 

evaluation considering false positives and false negatives. It comes especially helpful in cases 

of unequal class distribution. Real negative rate, there are feature (over all load, load memory, 

make span , throughput and wait ) that describe sample how distributed the tasks in virtual 

machine that describe by class. 
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𝑃𝑒𝑐𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
--------------------(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
--------------------(2) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙
--------------------(3) 

𝑆 𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
--------------------(4) 

 

Table1- GoCJ Excel worksheet generator 

df_OL Lm_p makespan Throughput waite 

df_task_sav

e Class 

132.1681 87.4339 6.971751 198.779 0 40000 V_Memory0 

132.1681 87.4339 6.971751 198.779 0 40000 V_Memory0 

157.4679 87.4339 6.971751 198.779 0 40000 V_Memory0 

105.9448 98.3628 6.966102 21.606 0 45000 V_Memory0 

51.63073 60.1115 6.985876 1261.816 0 27500 V_Memory0 

26.10203 60.1115 6.985876 1261.816 0 27500 V_Memory0 

26.10203 60.1115 7 0 0 27500 V_Memory0 

110.943 98.3628 6.966102 21.606 0 45000 V_Memory0 

108.9243 60.1115 6.985876 1261.816 0 27500 V_Memory0 

47.0887 32.7891 7 0 0 15000 V_Memory0 

49.27735 32.7891 7 0 0 15000 V_Memory0 

35.56492 60.1115 6.985876 1261.816 0 27500 V_Memory0 

35.56492 60.1115 7 0 0 27500 V_Memory0 

35.56492 60.1115 7 0 0 27500 V_Memory0 

144.4884 98.3628 6.966102 21.606 0 45000 V_Memory0 

103.3578 98.3628 6.966102 21.606 0 45000 V_Memory0 

116.4144 98.3628 6.966102 21.606 0 45000 V_Memory0 

55.54988 60.1115 6.985876 1261.816 0 27500 V_Memory0 

137.2394 98.3628 6.966102 21.606 0 45000 V_Memory0 

39.64868 32.7891 7 0 0 15000 V_Memory0 

21.28185 32.7891 7 0 0 15000 V_Memory0 
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Figure -6 3D scatter plot size, arrival times, and service times 

6.  Results and Discussion 

The deep learning based cloud resource provisioning performance was compared with a 

robust dataset developed from Google Cloud Jobs (GoCJ) and fine-tuned using Monte Carlo 

simulations. The dataset was preprocessed via outlier treatment, data normalization, and 

categorical feature encoding to prepare it properly for training the model. In addition, the 

Monte Carlo simulation enhanced the dataset’s resilience to allow the models to accept various 

probabilistic scenarios and better replicate real cloud resource requirements. The models 

performed outstandingly in workload management, with the models performing outstandingly 

in resource prediction and optimization. The data was then split into train, validation, and test 

sets in the ratios of 80The models were evaluated on various classification metrics, including 

precision, recall 
 

Table 2- F1-value performance of three algorithms 

Datasets CNN GRU LSTM 

Vmemory0 0.99 0.98 1 

Vmemory1 0.99 0.97 1 

Vmemory2 0.99 0.97 0.99 

Vmemory3 0.96 0.98 0.99 

F1-score, and specificity, to assess their accuracy in predicting cloud workload fluctuations 

and resource allocation optimization. Precision is the number of correctly predicted positive 

instances out of all the predicted positives. At the same time, recall (sensitivity) measures the 

model’s performance in identifying actual positive instances. The F1-score, as a harmonic 

means of recall and precision, ensures that the assessment remains balanced, particularly in a 

class imbalance scenario. Furthermore, specificity evaluates the model’s ability to label the 

negative instances accurately and provides additional insight into its performance in general. 
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Among the models experimented with, all deep learning techniques were performed (see Figure 

7). The Figure effectively resolved sequence learning and feature extraction, benefiting from 

the strength of CNN, LSTM, and GRU models. The techniques improved the model’s ability 

to capture short-term fluctuations and long-term trends of cloud workloads, resulting in more 

precise resource allocation decisions (see tables I, II, III and IV). Lastly, the results emphasize 

the need to incorporate diverse learning strategies to enhance predictive performance and 

optimize cloud computing performance. 

 

Figure -7 Left Plot: Job Size Distribution (Task = 10000) Right Plot: Job Arrival Times (Task = 10000) 

 

Figure -8 The performance of three algorithms 
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Table 3- Precision performance of three algorithms 

Datasets CNN GRU LSTM 

Vmemory0 0.99 0.98 1 

Vmemory1 0.99 0.99 1 

Vmemory2 1 0.97 0.99 

Vmemory3 0.96 0.97 0.99 

Vmemory4 0.98 0.96 1 

 
Table 4- Recall performance of three algorithms 

 

Datasets CNN GRU LSTM 

V 0.99 0.98 1 

Vmemory1 1 0.99 1 

Vmemory2 0.97 0.97 1 

Vmemory3 0.97 0.96 0.99 

Vmemory4 0.99 0.95 0.99 

 

Table 5- Specifity performance of three algorithms 

Datasets CNN GRU LSTM 

Vmemory0 1 0.98 1 

Vmemory1 1 0.99 1 

Vmemory2 1 0.97 1 

Vmemory3 0.99 0.96 1 

Vmemory4 0.99 0.96 1 

 

7. Conclusion and Future works 

This study evaluated cloud resource allocation performance using deep learning techniques, 

specifically in models like CNN, LSTM, and GRU. The results indicated that the models 

particularly outperformed regarding accuracy, prediction reliability, and resource usage. Using 

deep learning, the proposed models could thoroughly analyse workload variations, optimise 

resource allocation, and reduce inefficiencies in virtual cloud infrastructures. The findings 

confirm the need to integrate various learning architectures towards predictive capability, load 

balancing augmentation, and delay execution. In addition, the research showed that the 

performance measures for classification, such as precision, recall, F1-score, and specificity, 

offered significant information concerning model performance. In general, this research 

showcases the potential of deep learning in enhancing cloud resource management, leading to 

more effective scheduling, reduced energy consumption, and enhanced system reliability. With 
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these work directions, researchers can further enhance deep learning- based cloud resource 

allocation mechanisms to enhance cloud computing in terms of efficiency, adaptability, and 

affordability. 
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