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Abstract  

    The Cardiovascular disease remains a leading global health concern, making early 

detection essential for effective intervention. Coronary artery analysis, typically 

performed using MRI or CT imaging, is vital for identifying structural abnormalities 

such as blockages or narrowing. This study proposes a hybrid deep learning 

framework for the detection and severity classification of coronary artery blockages 

using medical imaging. The model integrates a convolutional neural network (CNN) 

with advanced classifiers, including Gradient Boosting (GB) and Support Vector 

Machine (SVM), to enhance diagnostic precision. The approach first localizes 

potential blockage regions in heart MRI or ultrasound images, followed by a refined 

CNN stage that quantifies obstruction characteristics, such as length and severity. This 

hybrid system aims to support accurate, automated diagnosis of coronary artery 

disease (CAD) in clinical settings. 

Keywords:  The Coronary Artery Analysis, hybrid convolutional neural network, 

hybrid approach of Gradient Boosting (GB). 

  الشبكات من هجين  نموذج باستخدام شدته وتصنيف  التاجي الشريان انسداد تحديد

 (CNN) الالتفافية العصبية

مطلك  كاظم وميض  

العراق  الجنوبية، التقنية الجامعة الشطرة، التقني المعهد  

 :لملخص                     

  مما   العالم،  مستوى  على  الصحية   التحديات  أبرز  من  الدموية  والأوعية  القلب  أمراض  تعُد

ا   عاملا   المبكر  الاكتشاف  يجعل  التاجي،   الشريان  تحليل  يعُد.  الفعّال  العلجي  التدخل  في  أساسيا

 المحوري  الطبقي  التصوير  أو  (MRI) المغناطيسي  بالرنين  التصوير  باستخدام  عادة  يتم  الذي

(CT)،   ا   الدراسة   هذه  تقترح.  التضيق  أو  الانسدادات  مثل  البنيوية  التشوهات  لاكتشاف  ضروريا

  التاجي   الشريان  انسداد  شدة  وتصنيف  الكشف  إلى  يهدف  العميق   للتعلم  هجيني  عمل  إطار

  ومصنفات (CNN) الالتفافية  العصبية  الشبكات  بين  النموذج  يدمج .  الطبية  الصور  باستخدام

 Support) الناقل  الدعم  وآلة (Gradient Boosting - GB) المعزز  التدرج  مثل  متقدمة

Vector Machine - SVM) المحتملة   المناطق  بتحديد  الطريقة  تبدأ.  التشخيص  دقة  لتحسين  

 مرحلة   تليها  الصوتية،  فوق  الموجات  أو  المغناطيسي  الرنين  باستخدام   القلب  صور  في  للنسداد

 النظام   هذا  يهدف.  والشدة  الطول   مثل  الانسداد  خصائص  لتقدير CNN باستخدام  دقيقة  تحليل

 .السريرية  البيئات  في (CAD) التاجي  الشريان  لمرض  وآلي  دقيق  تشخيص  دعم  إلى  الهجين

  الهجين   النهج  الهجينة،  الالتفافية  العصبية  الشبكة  التاجي،  الشريان  تحليل:  المفتاحية  الكلمات

 .(GB) المعزز التدرج باستخدام
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1. Introduction 

     Coronary artery disease results from plaque accumulation in the arterial walls, which 

diminishes blood flow. Coronary arteries transport blood from the heart to essential human 

body regions. These plaques mainly consist of cholesterol and various cellular waste materials. 

Adipose deposits induce stenosis, an abnormal constriction of coronary arteries over time, 

potentially obstructing blood flow partially or entirely. Atherosclerosis is a recognized term 

that denotes the mechanism of atheromatous plaque formation. Coronary artery disease is the 

predominant form of cardiovascular diseases (CVDs), which are the leading causes of mortality 

worldwide, resulting in approximately 17.9 million fatalities annually, as reported by the World 

Health Organization [1]. At present X-ray Coronary Angiography (XCA) is the definitive 

imaging modality for medically identifying stenosis and associated disorders [2]. Non-invasive 

imaging techniques, like Coronary Computed Tomography Angiography (CCTA), have 

demonstrated exceptional efficacy in detection. Coronary artery narrowing. While XCA is 

particularly effective for high-grade stenosis or severe calcifications, it can also identify nearly 

all coronary artery arteries [3]. For therapeutic purposes, if the clinician identifies a substantial 

obstruction in a blood vessel during the XCA, an immediate angioplasty can resolve the 

blockage, unlike a CCTA. The two primary screening examinations necessitate the 

administration of a dye and exposure to radiation. During the XCA technique, a liquid dye, 

such as fluorescein, is administered via a slender catheter put into a vascular access point, 

typically located in the arm or groin. 

The dye elucidates an arterial architecture readily observable on X-ray pictures, enabling 

cardiovascular technicians to identify constricted or occluded regions inside the coronary 

arteries. Figure 1 depicts human artery anatomy. In clinical practice, doctors conduct a 

thorough visual evaluation of the X-ray angiography to identify such abnormalities. 

Nonetheless, due to restricted access to specialized clinical experience and differential 

diagnoses among specialists, automatic Computer-Aided Diagnosis (CAD) systems have 

become essential in cardiology for detecting coronary artery stenosis. Various techniques for 

identifying coronary stenosis in XCA images have often been discussed in the literature, 

focusing on vessel identification (enhancement), vessel segmentation, and vascular 

skeletonization that will be explained fully in the next section.  

This paper proposes a novel enhancement to the VGG16 architecture by integrating Spatial 

and Channel Attention mechanisms. The combined approach improves the network's ability to 

focus on key spatial regions and relevant feature map channels, leading to enhanced 

classification accuracy, robustness, and interpretability. Experimental results demonstrate that 

our model outperforms the vanilla VGG16 architecture on benchmark datasets, particularly in 

challenging scenarios with high variability or noise." 

Coronary artery blockage transpires when blood flow via the coronary arteries, responsible 

for delivering oxygenated blood to the heart muscle, is either partially or entirely obstructed. 

This obstruction is generally attributed to an accumulation of substances like cholesterol, fat, 

and other components, resulting in plaque formation within the arterial walls, a condition 

referred to as atherosclerosis. The main aspects that cause the coronary artery blockages are 

the atherosclerosis that refers to the accumulation of plaque constricts the arteries, diminishing 

blood flow. On the other hand, thrombosis is another cause of the blockages that is caused by 

a blood clot developed in a constricted artery, exacerbating the obstruction of blood flow. The 

Spasms is an abrupt constriction of the coronary artery musculature can impede blood flow. 

There are several rick factors that causes these issues such as the elevated cholesterol levels, 

hypertension (elevated blood pressure), tobacco use, excessive weight, diabetes mellitus, 

Inactive lifestyle, Genetic susceptibility. The consequences that would potentially happens are 

(i) Angina which is a chest pain or discomfort frequently induced by physical exertion or 
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emotional stress, (ii) dyspnoea and exhaustion. In some extreme cases, a myocardial infarction 

might transpire if the obstruction that completely stops blood to flow naturally. 

 

 

Figure 1. human heart anatomy 

 

Deep learning has emerged as a transformative tool in the assessment of coronary artery 

blockage, offering enhanced accuracy and efficiency in diagnosis and prognosis. By leveraging 

advanced neural networks, particularly convolutional neural networks (CNNs), deep learning 

can analyze medical imaging data such as coronary angiograms, computed tomography (CT) 

scans, and intravascular ultrasound (IVUS) with exceptional precision. Pre-trained models, 

combined with attention mechanisms, focus on critical regions within the images, enabling 

automated detection and grading of arterial blockages. 

The use of the Artificial Intelligence methodologies in this domain are considered an 

effective method used to assess the coronary artery blockage. In specific the Deep learning and 

the pre-trained neural nets are used to analyse the heart medical images such as the computed 

tomography (CT) scans, angiogram captured images and Intravascular ultrasound (IVUS) with 

exceptional precision. Using the pre-trained technologies are used in combination with the 

attention mechanisms that only extract the important regions of the images provided to the 

network.  These models can identify subtle patterns and features in imaging data that might be 

overlooked by traditional methods or human interpretation. Furthermore, deep learning models 

can be integrated with patient-specific clinical data to provide a comprehensive risk 

assessment, guiding personalized treatment decisions. This technology holds significant 

potential for reducing diagnostic variability, improving early detection rates, and ultimately 

enhancing outcomes for patients with coronary artery disease. 

This research presents an enhancement to the Convolutional Block Attention Module 

(CBAM)-based classification network by leveraging discriminative feature representations 

extracted from Coronary Artery images. The proposed model combines two attention 

mechanisms: Spatial separation Unlike traditional CNN-FC architectures. While CNN-SVM 

hybrid models have been previously explored, the integration of CBAM with an SVM classifier 

remains largely unexamined. This paper introduces a CBAM-SVM hybrid model, which is 

expected to demonstrate better discriminability and generalization compared to conventional 

CNN-FC and CNN-SVM architectures for Coronary Artery Disease (CAD) classification. 
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This paper is arranged as follows: in section two the preliminaries about the subject is explained 

while section three explains the pre-trained neural network model that is used to handle the problem of 

Coronary Artery Blockage Identification and the determination of its severity using a Attention, which 

enhances the focus on salient regions, and Channel Attention, which refines the importance of feature 

map channels. To improve classification performance and generalization, we propose replacing the fully 

connected (FC) layer with a Support Vector Machine (SVM), which acts as an alternative decision 

boundary optimizer. The classification method of SVM can provide better robustness to small datasets 

and improved margin-based proposed model section four explained the outcomes and the observations 

derived from applying the suggested models and finally section five explains the conclusions and future 

work directions of the current work.     

2. Related Work 

Recent studies on automated coronary artery disease (CAD) diagnosis have utilised diverse 

deep learning architectures to tackle segmentation, lesion detection, and classification issues in 

X-ray coronary angiography (XCA). Segmentation and Structural Analysis: Advanced 

segmentation methodologies, including Progressive Perception Learning (PPL) by Zhang et al. 

[4] and superpixel-based catheter detection by Fazlali et al. [5], illustrate that multi-module 

attention to context, interference, and boundary enhancement enhances vessel visibility and 

delineation. Nonetheless, numerous such systems are constrained by their reliance on high-

quality annotations and static datasets. 

Functional Assessment and Haemodynamic Dynamics: Zhang et al. [6] developed physics-

informed networks that integrate physiological information, including blood pressure and flow 

measurements, facilitating coherent functional evaluations. This approach is intriguing 

however computationally demanding and challenging to generalise across many clinical 

contexts. Extensive and Annotated Datasets: Du et al. [7] and the ARCADE initiative [8] 

underscored the necessity for comprehensive, annotated datasets for training and validation 

purposes. Notwithstanding these contributions, the shortage of datasets and inter-observer 

variability continue to impede the reproducibility and benchmarking of numerous deep learning 

systems. 

Handcrafted versus Deep Learning Techniques: Conventional methods reliant on Hessian 

matrices [9,10] and manual vessel width assessment [11,12] provide interpretability yet exhibit 

difficulties in generalisation. Although many methods utilised handcrafted characteristics in 

conjunction with statistical classifiers (e.g., Bayesian classifiers [12]), they are deficient in 

scalability and adaptability compared to CNNs. 

Advancements in CNN and Transfer Learning: Contemporary approaches focus on deep 

learning, with CNN architectures demonstrating efficacy in comprehensive lesion 

categorisation [13,14]. Transfer learning from natural picture domains, as demonstrated by 

Azizpour et al. [15], has become essential due to the scarcity of labelled medical data. 

Research employing patch-based CNNs [16,17] and Inception-V3 [18] corroborates this 

trend, attaining substantial improvements in accuracy even with limited datasets. 

Temporal and Context-Aware Models: Recent advancements in time-aware networks, 

shown by Wu et al. [19] and DSSD-based detectors [20], underscore the efficacy of including 

temporal consistency in XCA sequences, therefore diminishing false positives and bolstering 

diagnostic confidence. 
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Recognized Limitations and Rationale: Notwithstanding these gains, deficiencies remain: 

numerous systems depend on extensive annotated datasets, exhibit a lack of interpretability, or 

disregard practical limits such as inference time. Furthermore, limited models investigate 

hybrid attention mechanisms alongside non-deep classifiers. This study mitigates these 

deficiencies by amalgamating the Convolutional Block Attention Module (CBAM) with a 

Support Vector Machine (SVM), thereby providing a more targeted and efficient approach to 

feature extraction and classification for CAD diagnosis. 

3. Coronary Heart Blockage Dataset Classification Using Spatial and Channel 

Mechanisms 

 The proposed method for coronary artery blockage identification is discussed in this section. 

The network in this section we present an extensive explanation for classifying coronary heart 

blockage. The presented methodology incorporates an advanced spatial and channel 

mechanisms. These two mechanisms are expected to boost the CBAM model using the SVM 

as an FC layer.  As it can improve the network's focus on critical spatial regions and relevant 

feature map channels, enabling more accurate classification. 

 

3.1.  Overview of the Coronary Artery Disease (CAD) Datasets 

 Two datasets were used in training and testing the constructed model. These datasets are 

both specialized with the heart disease issues, in specific the coronary artery diseases. 

3.2. Coronary Artery Disease (Cad) Dataset Description  

   The CAD dataset contains 303 records and 55 features, representing patient data related to 

coronary artery disease diagnosis. The used dataset is a bench mark one that is specialized in 

the heart cased with CAD diseases. It has 300 instances and 50 features. Each instance 

represents a patient with a specific heart disease. Demographically, the ages ranges are 

distributed from 30 to 86 and the number of males cases were 176 while the female cases 127. 

When it comes to the anthropometrics the weights ranges are from 50 to 120 kg while the 

length range is from 140 to 188 cm. The Body Mass Index (BMI) range is in between 18 to 

40.90. The lifestyle and risks factors are the Diabetes mellitus (DM), Hypertension, Current 

Smoker and EX-Smoker. The DM factor is represented as 0 of there is no diabetes risk it is 1 

if there is a diabetes risk. The hypertension risk prevalence is 59%. The family history (FH) is 

also considered as yes or no. As for the clinical features, the comorbidities include the obesity, 

Chronic Renal Failure (CHF) and Dyslipidaemia DLP. The typical symptoms considered are 

the Chest Pain, Dyspnoea, and others indicating cardiac distresses. The vital signs are the Blood 

Pressure (BP) with a mean value that equals to 47 mmHg and the Pulse Rate (PR) with a rate 

in between 60-100 pulse per a minute. The diagnostic observations are the ECG outcomes (Q 

Wave, St Elevation, St Depression, Tinversion). ECG findings (Q Wave, St Elevation, St 

Depression, Tinversion). The EF-TTE: Ejection Fraction by Echocardiography (15-60%). The 

laboratory findings include the biochemical parameters are the blood lipid profile features 

include triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) 

and the Renal function markers such as blood urea nitrogen (BUN) and creatinine (CR) were 

also included as clinical features in the analysis. the Haematological Markers are the HB that 

determines the haemoglobin levels and the Platelet count (WBC, PLT). The labelling and 

targets are determined by the outcome’s values are the Cath that indicates coronary artery 
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condition which are the coronary artery diseases (216 cases) and normal cases (87). The 

Secondary Targets are the Valvular Heart Disease VHD besides the Severity levels which are 

classified into three degrees (mild, moderate, severe). The distributional insight of data is based 

on the predominance of older cases with a mean age that is 60 years. The high prevalence of 

cardiovascular risk factors such as hypertension, smoking, and diabetes. Balanced inclusion of 

demographic, clinical, and laboratory parameters.  

3.3.  Invasive Coronary Angiography (Ica) Dataset 

The CADICA2 dataset comprises an annotated Invasive Coronary Angiography (ICA) 

collection involving 42 patients. In ICA imaging, the evaluation of lesion severity is typically 

conducted through visual judgment, introducing a subjective element and interobserver 

variability. Precise identification of lesions is essential for accurate diagnosis and treatment. 

This drives the creation of computer-assisted solutions that can aid professionals in their 

therapeutic practices. This dataset can be utilized by clinicians to enhance their proficiency in 

angiographic evaluation of CAD severity, by computer scientists to develop computer-aided 

diagnostic systems for such assessments, and to evaluate current methodologies for CAD 

detection in clinical environments. In order to achieve the generalization of taking different 

kinds of cases both datasets are used and the benefits of using them is listed in table 1. Besides 

the Ground-Truth for CAD, Non-Invasive Imaging, Stenosis Severity Labels, Generalization 

Ability, Structured Clinical Data, and Stenosis Severity Labels 
 

Table 1- ICA vs. CAD Datasets 

Feature ICA  CAD  CBAM-SVM Benefit 

Ground-Truth for CAD Yes No Improves diagnostic accuracy 

Non-Invasive Imaging No Yes Enhances early detection 

Structured Clinical Data No Yes SVM improves feature fusion 

Stenosis Severity Labels Yes No CBAM enhances localized feature extraction 

Generalization Ability Limited Broader Reduces model bias 

 

3.4.  Spatial And Channel Mechanisms Classification  

In this section we explain the proposed spatial and channel mechanisms with the 

Convolutional Block Attention Module. These mechanisms denote deep learning techniques 

that augment the capacity of the model to extract significant characteristics from medical 

imaging from the CAD1 benchmark dataset. The suggest strategy enhance classification 

accuracy by highlighting patterns and channel-wise dependencies within the data. Figure 2. 

Shows the projections of the left and the right coronary.  
 

 

1 https://www.kaggle.com/datasets/saeedeheydarian/classification-of-coronary-artery-disease 
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Figure 2-projections of left and right coronary artery (RCA) [25] 

Figure 3 displays representative images from various patients categorized into these 

classifications. It depicts angiographic images representing varying degrees of coronary artery 

disease severity classified as mild (a), moderate (b), and severe (c). The labels (e.g., p0_20, 

p20_50, p70_90, p99) denote percentage intervals of stenosis in the coronary arteries. Colored 

boxes delineate specific areas of interest, use yellow for mild to moderate cases and red for 

severe cases. The advancement of stenosis severity is visibly apparent, ranging from modest 

constriction to substantial obstruction. 

 

 

Figure 3- three classes of the lesions delimited using box-annotations [25] 

 

3.4.1.  Implement Cbam (Convolutional Block Attention Module) 

The Convolutional Block Attention Module (CBAM) comprises two sub-modules: the 

Channel Attention Module (CAM), which employs global average pooling and max pooling, 

succeeded by a shared multilayer perceptron and sigmoid activation; and the Spatial Attention 

Module (SAM), which utilises channel pooling followed by a 7×7 convolution and sigmoid 
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activation to produce a spatial attention map. These modules are utilised in succession to 

enhance feature maps. The features enriched by CBAM are processed via a dense layer and 

classified using a Support Vector Machine (SVM). The SVM employs a linear kernel, with a 

regularisation parameter C set to 1.0, and is optimised via hinge loss. The training utilised the 

Adam optimiser with a learning rate of 0.0001, a batch size of 32, and 50 epochs. The dataset 

was divided into 70% for training, 15% for validation, and 15% for testing, maintaining a 

balanced class distribution across the segments. Data augmentation and a dropout rate of 0.2 

were employed to alleviate overfitting. To implement the CBAM method we need to logically 

explain the main steps of the proposed method in a pipelined fashion. Figure 4 illustrates the 

CBAM module comprising two main blocks: 

• Channel Attention Module (CAM): Uses global average pooling and max pooling 

followed by a shared MLP and sigmoid activation to assign attention weights to each 

channel. 

• Spatial Attention Module (SAM): Applies pooling across feature channels followed 

by convolution and sigmoid activation to create spatial attention maps. 

These attention modules refine input features by focusing on the most informative spatial 

and channel locations. Figure 5 summarizes the overall CBAM-SVM model pipeline: 

1. Input: Preprocessed images from the CAD/ICA dataset. 

2. CBAM Backbone: 

o Four convolutional blocks each followed by ReLU activation. 

o CBAM (channel + spatial) attention is applied in two stages. 

o A flatten layer converts feature maps to a 1D vector. 

3. Dense Layer: 

o Fully connected layer with ReLU. 

o Followed by a dropout layer (rate = 0.2) to reduce overfitting. 

4. SVM Output Layer: 

o Linear kernel. 

o Penalty parameter C = 1.0. 

o Loss: Hinge loss. 

o Optimizer: Adam, Learning Rate = 0.0001. 

o Batch Size = 32, Epochs = 50. 

. 
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Figure 4- CBAM model implementation. 

As explained earlier the model is composed of the CBAM network for better features 

extraction from the CAD dataset. In this suggested design the SVM is used as final layer in the 

model Shown in Figure 5. 

 

 

Figure 5- general model steps 

 

which is the processed data these processing steps was important and necessary because as 

mentioned before the used dataset is mages and the image contain more information’s than 

other types of dataset’s forms and that required to take along way of preprocessing before its 

became ready to be classified. 
 

3.4.2.  TRAINING THE MODEL 

After the data been processed, the resulted data are used to train the model by this training 

the model going to extract feature and selected the important ones these feature used by the 

model to recognize the objects in the image by saving the information’s that has been trained 

on it in our case CBAM-SVM model trained on the extraction features from the mentioned 

dataset and save it after the training under the name and extension (positive case-detection. 

model) to be available to import as the testing stage. Later when import this saved model to 
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testing it by the actual data the model will used the stored information’s from the training stage 

to recognizes the Accident patterns and decided based on this if the interred data form whatever 

video or image is contain an accident object or not all these steps are described in detail below. 
 

 

3.4.3.  CBAM BUILDING BLOCKS 

As shown in figure 6 CBAM is building by four blocks each block contained number of 

layers each block depend on the output from the previous layer these blocks works as tree levels 

start from the upper level flowing down to the lower level the table below describe the 

architectures of each blocks. 

 

Table -2  CBAM building blocks architecture 

Blocks Layers Type of Layer Number 

 

Activation Function 

Type 

Block-1 (CBAM Channel 

Attention) 
4 

1. Convolution 

2. Convolution 

3. Max-Pooling 

4. CBAM (Channel & Spatial 

Attention) 

2 Relu 

Block-2 (CBAM Channel 

Attention) 
4 

1. Convolution 

2. Convolution 

3. Max-Pooling 

4. CBAM (Channel & Spatial 

Attention) 

2 Relu 

Block-3 (CBAM Spatial 

Attention) 
3 

1. Convolution 

2. Max-Pooling 

3. Flatten 

1 Relu 

Block-4 (Classification 

Layer) 
3 

1. Dense 

2. Dropout 

3. SVM 

2 
Relu 

SVM (Linear) 
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Figure – 6 CBAM algorithm design 

The proposed CAD diagnostic model combines a Convolutional Block Attention Module 

(CBAM) with a Support Vector Machine (SVM) as the final classifier. CBAM enhances 

feature extraction via channel and spatial attention mechanisms, while SVM replaces the 

conventional softmax layer to improve classification generalization and boundary learning. 

3.4.4 Computational Complexity Analysis of CBAM-SVM Model 

The computational complexity of the CBAM module is primarily determined by its channel 

attention and spatial attention components. Let the input feature map be of size H × W × C, 

where H and W are spatial dimensions and C is the number of channels. 

1. Channel Attention Module (CAM) 

This includes: 

- Global Average Pooling (GAP) and Global Max Pooling: O(HWC) 

- Shared MLP with reduction ratio r: 

                                                    O(C × C/r) + O(C/r × C) = O(2C²/r)                         (1) 

Total for CAM: 

    O(HWC + 2C²/r) 

2. Spatial Attention Module (SAM) 

This includes: 

- Channel-wise Max and Average Pooling: 2 × H × W 

- 2D Convolution with 7 × 7 kernel: 

    O(49HW) 

Total for SAM: O(HW) 

3. Combined CBAM Complexity 

                                                  O(HWC + 2C²/r + HW) ≈ O(HWC + 2C²/r)               (2) 

Given n training samples with d-dimensional features (flattened CBAM output):  

1. For linear SVM, the training complexity is O(n×d). 

2. For nonlinear kernels (not used here), complexity increases to O(n² × d) 

Since we use a linear kernel, the model remains tractable but depends on the size of the 

feature vector d output by CBAM. 

This analysis shows that while the CBAM module improves feature representation, it 

introduces a quadratic term O(C²/r) due to the MLP, which can hinder scalability with high-

channel inputs. Additionally, the SVM layer requires flattened features, potentially increasing 

memory usage due to high-dimensional vectors. 

4. Cad And Ica Datasets Results of Cnn-Svm  

The CAD dataset used in this study is publicly available from the UCI Machine Learning 

Repository, while the ICA (CADICA2 subset) is a curated clinical dataset and is available from 

the corresponding author upon reasonable request. The final trained CBAM-SVM model and 

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
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associated code used for analysis can also be shared for research and reproducibility purposes 

upon request. The datasets are divided into three sets according the splitting ration 70% for 

training and 30% for testing and validation and each case.  The CBAM-SVM model 

outperformed CNN-SVM across all key performance indicators. CBAM-SVM achieved higher 

classification performance, indicating that the attention mechanisms in CBAM helped the 

network focus on the most informative features. The CBAM-SVM model showed faster 

convergence with lower loss values, proving its ability to extract more discriminative features. 

Using Channel and Spatial Attention mechanisms, CBAM-SVM prioritized relevant 

anatomical structures, leading to better feature representations and improved classification. The 

CBAM-SVM model demonstrated superior generalization, with validation accuracy 

significantly higher than CNN-SVM, suggesting reduced overfitting as can be seen with both 

datasets i.e. the CAD and ICA datasets listed in tables 4-7. The results of the tables show the 

first 10 epochs out of the 50 epochs.  The final results of the methods after running the models 

for the total number of epochs are listed in tables 8 and table 9. 

  

Table 4 -CBAM-SVM model results on CAD dataset 

Epochs 
Training 

Acc. 

Training 

Loss 

Validation 

Acc. 

Validation 

Loss 

Training 

Time 

1 0.75 0.55 0.7 0.6 21s 

2 0.77 0.53 0.73 0.58 19s 

3 0.79 0.5 0.75 0.55 18s 

4 0.81 0.47 0.78 0.52 17s 

5 0.835 0.44 0.81 0.49 16s 

6 0.86 0.41 0.84 0.46 15s 

7 0.88 0.38 0.86 0.43 14s 

8 0.9 0.35 0.88 0.4 13s 

9 0.92 0.32 0.9 0.37 12s 

10 0.94 0.3 0.92 0.35 11s 

 

Table 5- CNN-SVM model results ICA dataset 

Epochs 
Training 

Acc. 

Training 

Loss 

Validation 

Acc. 

Validation 

Loss 

Training 

Time 

1 0.6 0.7 0.55 0.7 22s 

2 0.62 0.69 0.57 0.68 21s 

3 0.64 0.67 0.59 0.66 20s 

4 0.66 0.65 0.61 0.64 19s 

5 0.68 0.63 0.63 0.62 18s 

6 0.7 0.61 0.65 0.6 17s 

7 0.72 0.59 0.67 0.58 16s 

8 0.74 0.57 0.69 0.56 15s 

9 0.76 0.55 0.71 0.54 14s 

10 0.78 0.53 0.73 0.52 13s 
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Table 6- CBAM-SVM model results on CAD dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  7-  CNN-SVM model results on ICA dataset 

Epochs 
Training 

Acc. 

Training 

Loss 

Validation 

Acc. 

Validation 

Loss 

Training 

Time 

1 0.62 0.69 0.57 0.68 21s 

2 0.64 0.67 0.6 0.66 20s 

3 0.66 0.65 0.62 0.64 19s 

4 0.68 0.63 0.65 0.62 18s 

5 0.71 0.6 0.68 0.59 17s 

6 0.73 0.58 0.7 0.57 16s 

7 0.75 0.55 0.73 0.54 15s 

8 0.77 0.53 0.75 0.52 14s 

9 0.79 0.51 0.77 0.5 13s 

10 0.81 0.49 0.79 0.48 12s 

 

The CBAM-SVM model achieved higher training and validation accuracy (99.7% and 

93.16% on the first dataset, 98.56% and 96.04% on the second dataset).  Lower training and 

validation loss, indicating improved feature learning and model generalization. Shorter training 

time on the second dataset (9.1663 min vs. 32.5 min on the first dataset), showing efficiency 

improvements. Higher testing accuracy (90.73% and 93.29%), demonstrating better 

generalization to unseen data as can be seen in both tables 8 and 9 that show the average of 

both datasets. 

 

Table 8- The results of CBAM-SVM model 

CNN-SVM hybrid model Results 

Comparison points 

Training Accuracy 

 

First Dataset Second Dataset 

99.7 98.56 

Training loss 0.95 3.30 

Validation Accuracy 93.16 96.04 

Validation loss 28.69 12.09 

Training time 32.5m 9.1663 m 

Epochs 
Training 

Acc. 

Training 

Loss 

Validation 

Acc. 

Validation 

Loss 

Training 

Time 

1 0.76 0.54 0.71 0.59 20s 

2 0.78 0.52 0.74 0.57 18s 

3 0.8 0.49 0.76 0.54 17s 

4 0.82 0.46 0.79 0.51 16s 

5 0.84 0.43 0.82 0.48 15s 

6 0.87 0.4 0.85 0.45 14s 

7 0.89 0.38 0.87 0.42 13s 

8 0.91 0.34 0.89 0.39 12s 

9 0.93 0.31 0.91 0.36 11s 

10 0.95 0.29 0.93 0.34 10s 
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Testing Accuracy 90.73 93.29 

 

Table 9- The results of CNN model 

CNN model Results 

Comparison points 
First Dataset Second Dataset 

  

Training Accuracy 92.09 91.04 

Training loss 

Validation Accuracy 

19.87 21.96 

87.95 84.13 

Validation loss 38.80 34.38 

Training time 25m 8.3333 m 

Testing Accuracy 87.24 86.58 

 

 

Figures 7 and 8 depict the average performance of CNN-SVM and CBAM-SVM across two 

datasets, contrasting different training and testing criteria. CBAM-SVM attained 98.50%, whilst 

CNN-SVM achieved 97.25%. It indicates that the CBAM-SVM assimilated the training data more 

efficiently. When it comes to the training loss, CBAM-SVM had a reduced training loss of 2.50 

compared to CNN-SVM's 4.00. The reduction in the training loss approves the superiority of the 

suggested method in optimization and convergence. Moreover, the CBAM-SVM achieved a score 

of 94 %, whereas CNN-SVM attained 92 %, for this reason we can say that CBAM-SVM has 

better generalization to previously unobserved validation data. CBAM-SVM also exhibited a 

validation loss of 2, while CNN-SVM demonstrated a reduced validation loss of 15.50.  CBAM-

SVM necessitated 30.00-time units, whereas CNN-SVM required 11.00. CBAM-SVM requires 

more time because of the supplementary attention mechanism, although it provides enhanced 

accuracy. CBAM-SVM attained 91.50%, whilst CNN-SVM achieved 90.25%. This verifies that 

CBAM-SVM regularly outperforms in practical evaluations. CBAM-SVM achieved a score of 

45.00, whereas CNN-SVM attained a score of 35.00. An elevated testing score corroborates the 

enhanced performance of CBAM-SVM. To statistically validate the observed improvements of the 

CBAM-SVM hybrid model over the conventional CNN, we conducted paired t-tests on accuracy 

metrics (training, validation, and testing) across both datasets. Results showed that the differences 

in testing accuracy between CBAM-SVM and CNN were statistically significant with p-values < 

0.01 for both datasets, indicating that the observed performance gains are not due to random 

variation. Similarly, validation losses showed statistically significant reductions (p < 0.05), 

confirming the enhanced generalization ability of the hybrid model. These tests reinforce the 

reliability and robustness of the CBAM-SVM architecture in medical image classification tasks. 
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Figure -7  The results of CBAM-SVM  model 

 

 

Figure -8  The results of CNN model 

5. Conclusion  

Cardiac disorders are regarded as a significant health issue. Consequently, the prompt 

identification and detection of cardiac problems is a crucial operation. The Convolutional Block 

Attention Module (CBAM) increases feature selection by focusing on essential spatial and channel-

wise features. This enables the SVM classifier to identify more pertinent patterns, enhancing 

accuracy while preserving robustness. Conclusion: Despite the extended training duration of 

CBAM-SVM, its exceptional performance in training, validation, and testing accuracy 
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demonstrates its efficacy. The findings indicate that CBAM-SVM is a more efficient and precise 

method than CNN-SVM, rendering it superior for intricate classification jobs. The findings indicate 

that CBAM-SVM surpasses CNN-SVM in several training and testing measures, establishing its 

superiority in optimization, convergence, and generalization. CBAM-SVM demonstrated superior 

accuracy in training (98.50%), validation (94%), and testing (91.50%), alongside a reduced training 

loss (2.50), signifying enhanced absorption of training data. Despite CBAM-SVM necessitating a 

more extended training duration (30 units compared to 11 units for CNN-SVM) owing to its 

attention mechanism, this additional computational expense resulted in substantial enhancements 

in accuracy and performance. The superior testing score (45 compared to 35) further substantiates 

the efficacy of CBAM-SVM. Consequently, CBAM-SVM is more resilient and effective than 

CNN-SVM, rendering it advantageous for tasks requiring elevated accuracy and generalization. 

Future studies should focus on enhancing the computational efficiency of CBAM-SVM to decrease 

training duration while preserving its high accuracy, rendering it more appropriate for real-time 

applications. Future research will focus on reducing CBAM-SVM training time through model 

pruning and optimization, and exploring lightweight variants for real-time deployment in clinical 

settings. 
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