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Abstract  

    In-band full-duplex (IBFD) communication systems represent a major 

breakthrough in wireless communication, allowing transmission and 

reception of signals on the same channel simultaneously. However, a critical 

challenge in IBFD systems is mitigating Self-Interference (SI), which results 

from the leakage of the transmitted signal into the receiver, potentially 

overwhelming the received signal and degrading overall system performance. 

This paper investigates the application of Convolutional Neural Networks 

(CNNs) for digital Self-Interference Cancellation (SIC) in IBFD systems. We 

propose a CNN architecture consisting of three convolutional layers, designed 

to learn and suppress the nonlinear characteristics of self-interference 

effectively. Simulation results demonstrate that the proposed CNN-based SIC 

method achieves 52.492 dB interference suppression at an SNR of 30 dB, 

significantly improving the bit error rate performance compared to 

conventional methods. 
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  الخلاصة 

النطاق الكامل المزدوج )     تقدمًا كبيرًا في مجال الاتصالات  IBFDتمثل أنظمة الاتصالات ذات   )

اللاسلكية، حيث تسمح بإرسال واستقبال الإشارات على نفس القناة في وقت واحد. ومع ذلك، فإن التحدي  

(، والذي ينتج عن تسرب الإشارة المرسلة  SIهو التخفيف من التداخل الذاتي )  IBFDالحاسم في أنظمة  

شارة المستقبلة وتدهور الأداء العام للنظام. يبحث هذا البحث إلى المستقبل، مما قد يؤدي إلى إغراق الإ

( التلافيفية  العصبية  الشبكات  تطبيق  )CNNsفي  الرقمي  الذاتي  التداخل  لإلغاء   )SIC  أنظمة في   )

IBFD  بنية نقترح   .CNN   غير الخصائص  وقمع  لتعلم  تلافيفية، مصممة  طبقات  ثلاث  من  تتكون 

المقترحة    CNNالقائمة على    SICل. توضح نتائج المحاكاة أن طريقة  الخطية للتداخل الذاتي بشكل فعا

ديسيبل، مما يحسن  30ديسيبل عند نسبة إشارة إلى ضوضاء تبلغ   52.492تحقق قمعاً للتداخل بمقدار 

 بشكل كبير من أداء معدل خطأ البت مقارنة بالطرق التقليدية.
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1. Introduction 

   In recent years, the demand for higher data rates in wireless communication has accelerated 

the development of IBFD systems, which allow devices to transmit and receive data 

simultaneously over the same frequency [1, 2]. Unlike traditional half-duplex systems, which 

can either transmit or receive signals at a time. However, one of the key challenges in IBFD 

systems is the presence of strong SI, where the transmitted signal interferes with the reception 

of the incoming signal. The SI degrades system performance significantly[3]. Therefore, the 

efficient SIC techniques play a critical role in realizing the potential of IBFD systems. 

 

   Conventional SIC methods use a variety of strategies, including passive, analog, and digital 

cancellation [4-6], to lessen SI. Even though these techniques have demonstrated some 

efficacy, however, these methods may not be sufficient to address the non-linear effects 

introduced by transceiver impairments [7], in addition to the inability to adapt to changing 

circumstances. These shortcomings show that in order to improve the performance of IBFD 

systems, more reliable and adaptable solutions are required.  

 

   In order to overcome the limitations and challenges associated with conventional cancellation 

methods, recent studies have focused on applying Neural Networks (NNs) for SIC in IBFD 

systems [7-9]. Reference [7] investigated the use of neural networks as an alternative to 

traditional non-linear cancellation methods based on polynomial basis functions, and in [8, 9], 

hardware architectures for NN-based SI cancellers were presented, and their performance was 

compared with conventional polynomial-based cancellers. Furthermore, in [10], Machine 

Learning (ML) methods such as recurrent and complex-valued NNs for SIC in Full-Duplex 

(FD) radios have been investigated. Additionally, the authors in [11]  achieved a suppression 

capacity of 47.19 dB using the long short-term memory. 

Moreover, convolutional neural networks have achieved remarkable success in various 

applications such as image processing [12], speech recognition [13], and recently in wireless 

communication, where they have been used for SIC in full-duplex millimeter-wave systems 

[14]. These capabilities illustrate the possibility of CNNs in refining signal processing. 

 

   In this paper, we propose the implementation of CNNs for digital SIC in IBFD systems, with 

the goal of demonstrating their usefulness in reducing SI and enhancing system performance. 

The paper is organized as follows: Section 2 describes the methodology, including the system 

model and the architecture of the proposed CNN. In Section 3, we present the results. Finally, 

Section 4 provides a conclusion of the paper. 

 

2. Methodology 

    In this section, we describe the architecture of the IBFD system that serves as the foundation 

for our research. 

2.1 System Model 

   The IBFD system comprises a transmitter and a receiver that are both operating on the same 

frequency channel. The transmitter sends signals while the receiver receives signals. During 
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this simultaneous operation, a part of the signal that is transmitted by the transmitter is reflected 

back into the receiver, resulting in SI as illustrated in Figure 1.    

 

 

 

 

 

 

 

The received signal can be written as 

 

𝑦(𝑡) = 𝑠(𝑡) + 𝑠𝑖(𝑡) + 𝑛(𝑡), (1) 

where 𝑠(𝑡) denotes the desired signal received from the far node and s𝑖(𝑡) denotes the SI signal, 

can be modeleds as 

    𝑠(𝑡) =  ℎ ∗ 𝑥𝑓(𝑡),  (2) 

𝑠𝑖(𝑡) =  ℎ𝑠𝑖  ∗  𝑥𝑛(𝑡), (3) 

where * represents the convolution operator, h and hsi represents the transmission channel and 

the SI channel, respectively. Moreover, n(𝑡),represents the additive white Gaussian noise 

(AWGN). To mitigate the impact of si(𝑡) on the received signal, we employ SIC-based CNNs. 

The architecture of the CNNs will be discussed in the following subsection. 

 

2.2 CNN Architecture 

    CNNs are a type of deep neural network which have recently attracted considerable interest 

in multiple ML applications [15]. They are especially useful when applied to the structured 

grid patterns like images in two dimensional (2D) [16] and sequence data in one dimensional 

(1D) [17]. The CNNs make use of the spatial hierarchies through convolutional layers,  to 

efficiently extract patterns of the input data. 

Figure -1 Received signal model. 
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    In this study, we present a CNN architecture made up of three convolutional modules (each 

consisting of a convolution one-dimensional layer, a batch normalization layer, and a ReLU), 

as seen in Figure 2. Subsequently, a fully connected layer was used to accurately learn the 

properties of the SI signal and suppress it from the received signal. The CNN model was trained 

with the parameters shown in Table 1. 

Table 1- Parameters for the proposed systems. 

 

The anticipated interference from the output of the suggested model is stated as 

�̂�𝑖(𝑡) =  ℎ̂𝑠𝑖  ∗  𝑥𝑛(𝑡),   (4) 

 

Parameter Value 

Input features 2(1 real,1 imaginary) 

Activation function ReLU 

Optimizer sgdm 

Number of epochs 300 

Batch size 300 

InitialLearnRate 0.1 

LearnRateDropFactor 0.1 

LearnRateDropPeriod 100 

Modulation type QAM 

Cyclic Prefix (CP) 2^(4:7) 

Training SNR 30 dB 

Loss Function MSE 

Figure -2 CNN structure. 
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2.3 Interference Cancellation 

     After forecasting the 𝑠𝑖(𝑡) signal with the proposed model, we subtract it from the received 

signal y(t), which may be expressed as 

𝑦
𝑐
(𝑡) =  𝑠(𝑡) + 𝑠𝑖(𝑡) − �̂�𝑖(𝑡)⏟        

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝐼

+ 𝑛(𝑡).  (5) 

where 𝑦𝑐(𝑡) represents the signal after cancellation. 

3. Results and Discussion 

    In this section, we present the results of the proposed SIC technique, which was obtained 

through a simulation process conducted in MATLAB R2022b, based on the system model 

illustrated in Figure 3. The simulations utilized 16 QAM modulation with N=2048. The 

performance evaluation includes the criteria presented in Table 2. 

 

 

 

 

 

 

 

Figure -3 Architectural model of IBFD system. 
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Table 2- Evaluation Metrics. 

Name Formula 

SI suppression capability 
𝐶𝑑𝐵 =  10𝑙𝑜𝑔10  (

𝑃𝑆𝐼
𝑃𝑅𝑆𝐼

), 

MSE 

𝑀𝑆𝐸 =
1

𝑁
∑(yi − ŷi)

𝑁

𝑖=1

, 

RMSE 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(yi − ŷi),

𝑁

𝑖=1

  

Accuracy 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑐
𝑁𝑡
 , 

where 𝑃𝑆𝐼 stands the power of SI signal, 𝑃𝑅𝑆𝐼 stands the power of residual SI signal, N stands 

the number of samples, yi stands the actual value, ŷi stands the predicted value, 𝑁𝑐 stands the 

number of correct predictions, and 𝑁𝑡 stands the total number of predictions. Table 3 compares 

the results of the suggested method (CNN) with the traditional Normalized Least Mean Squares 

(NLMS) algorithm. The NLMS was configured with a filter order = 50 and a step size = 0.3, 

evaluated across various Signal-to-Noise Ratio (SNR) levels. A closer look at Table 3 shows 

that the suggested technique outperforms the traditional method significantly. 

 

Table 3- Performance propose vs. traditional methods. 

SNR CdB MSE RMSE Accuracy 

Propose Method 

SNR=0 46.267 2.398e-04 0.0155 99.976 

SNR=5 47.303 1.856e-04 0.0136 99.981 

SNR=10 48.851 1.3e-04 0.0114 99.987 

SNR=15 49.815 1.064e-04 0.0103 99.989 

SNR=20 50.994 7.887e-05 0.0089 99.992 

SNR=25 51.868 6.408e-05 0.008 99.993 

SNR=30 52.492 5.556e-05 0.0075 99.994 

Traditional Method 
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SNR=0 16.128 0.246 0.496 75.424 

SNR=5 16.212 0.239 0.489 76.064 

SNR=10 16.317 0.226 0.476 77.399 

SNR=15 16.415 0.224 0.473 77.643 

SNR=20 16.506 0.222 0.471 77.821 

SNR=25 16.616 0.217 0.465 78.277 

SNR=30 16.749 0.214 0.462 78.563 

Furthermore, Figure 4 illustrates the BER curves for the proposal and traditional methods. With 

interference, the BER stays high and stable as the SNR raises. Additionally, as shown in Figure 

4a, the proposed CNN has a much lower BER compared to the standard cancellation techniques 

illustrated in Figure 4b. For instance, at an SNR = 20 dB and when CP = 64, the BER of the 

proposed CNN model was 0.002, while the BER of conventional methods equals 0.028. This 

demonstrates the CNN’s capability to enhance signal integrity in IBFD systems. 

 

 

Lastly, Figure 5 displays the SI signal's power spectral density (PSD), the residual signal's 

spectrum after cancellations using the traditional method, and the residual signal's spectrum 

after cancellations using the suggested method, it is important to note that the spectrum of the 

residual SI signal obtained from the proposed method is lower than that of conventional 

methods. 

 

 

 

                                          (a)                                                                                   (b) 

Figure -4 BER efficiency for our proposal and traditional method (a) CNN (b) NLMS. 
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4. Conclusions 

 

    In this paper, we presented a digital SIC method that utilizes CNNs in the IBFD system to 

effectively diminish the SI signal. The proposed method takes advantage of the capability of 

CNNs to learn complex nonlinear patterns in interference data to realize improved signal 

quality compared to traditional SIC techniques. The obtained results have shown the proposed 

CNN-based SIC technique achieves an interference suppression of 52.492 dB, which is 

superior to the traditional NLMS algorithm's 16.749 dB at an SNR of 30 dB. Future research 

will concentrate on exploring new types of neural network architectures for SIC and 

investigating how CNNs are integrated with other techniques to achieve higher levels of 

performance of SIC. 
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