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Abstract

In-band full-duplex (IBFD) communication systems represent a major
breakthrough in wireless communication, allowing transmission and
reception of signals on the same channel simultaneously. However, a critical
challenge in IBFD systems is mitigating Self-Interference (SI), which results
from the leakage of the transmitted signal into the receiver, potentially
overwhelming the received signal and degrading overall system performance.
This paper investigates the application of Convolutional Neural Networks
(CNNs) for digital Self-Interference Cancellation (SIC) in IBFD systems. We
propose a CNN architecture consisting of three convolutional layers, designed
to learn and suppress the nonlinear characteristics of self-interference
effectively. Simulation results demonstrate that the proposed CNN-based SIC
method achieves 52.492 dB interference suppression at an SNR of 30 dB,
significantly improving the bit error rate performance compared to
conventional methods.
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1. Introduction

In recent years, the demand for higher data rates in wireless communication has accelerated
the development of IBFD systems, which allow devices to transmit and receive data
simultaneously over the same frequency [1, 2]. Unlike traditional half-duplex systems, which
can either transmit or receive signals at a time. However, one of the key challenges in IBFD
systems is the presence of strong Sl, where the transmitted signal interferes with the reception
of the incoming signal. The Sl degrades system performance significantly[3]. Therefore, the
efficient SIC techniques play a critical role in realizing the potential of IBFD systems.

Conventional SIC methods use a variety of strategies, including passive, analog, and digital
cancellation [4-6], to lessen SI. Even though these techniques have demonstrated some
efficacy, however, these methods may not be sufficient to address the non-linear effects
introduced by transceiver impairments [7], in addition to the inability to adapt to changing
circumstances. These shortcomings show that in order to improve the performance of IBFD
systems, more reliable and adaptable solutions are required.

In order to overcome the limitations and challenges associated with conventional cancellation

methods, recent studies have focused on applying Neural Networks (NNs) for SIC in IBFD
systems [7-9]. Reference [7] investigated the use of neural networks as an alternative to
traditional non-linear cancellation methods based on polynomial basis functions, and in [8, 9],
hardware architectures for NN-based Sl cancellers were presented, and their performance was
compared with conventional polynomial-based cancellers. Furthermore, in [10], Machine
Learning (ML) methods such as recurrent and complex-valued NNs for SIC in Full-Duplex
(FD) radios have been investigated. Additionally, the authors in [11] achieved a suppression
capacity of 47.19 dB using the long short-term memory.
Moreover, convolutional neural networks have achieved remarkable success in various
applications such as image processing [12], speech recognition [13], and recently in wireless
communication, where they have been used for SIC in full-duplex millimeter-wave systems
[14]. These capabilities illustrate the possibility of CNNSs in refining signal processing.

In this paper, we propose the implementation of CNNs for digital SIC in IBFD systems, with
the goal of demonstrating their usefulness in reducing SI and enhancing system performance.
The paper is organized as follows: Section 2 describes the methodology, including the system
model and the architecture of the proposed CNN. In Section 3, we present the results. Finally,
Section 4 provides a conclusion of the paper.

2. Methodology

In this section, we describe the architecture of the IBFD system that serves as the foundation
for our research.

2.1 System Model

The IBFD system comprises a transmitter and a receiver that are both operating on the same
frequency channel. The transmitter sends signals while the receiver receives signals. During
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this simultaneous operation, a part of the signal that is transmitted by the transmitter is reflected
back into the receiver, resulting in Sl as illustrated in Figure 1.
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Figure -1 Received signal model.

The received signal can be written as

y(@) =s(t) +5:(t) + (D), 1)

where s(t) denotes the desired signal received from the far node and s; (t) denotes the Sl signal,
can be modeleds as
s(t) = hx* x¢(t), (2)

$i(t) = hsi * x (1), ©)

where * represents the convolution operator, h and hg; represents the transmission channel and
the SI channel, respectively. Moreover, n(t),represents the additive white Gaussian noise
(AWGN). To mitigate the impact of s;(t) on the received signal, we employ SIC-based CNNs.
The architecture of the CNNs will be discussed in the following subsection.

2.2 CNN Architecture

CNNs are a type of deep neural network which have recently attracted considerable interest
in multiple ML applications [15]. They are especially useful when applied to the structured
grid patterns like images in two dimensional (2D) [16] and sequence data in one dimensional
(1D) [17]. The CNNs make use of the spatial hierarchies through convolutional layers, to
efficiently extract patterns of the input data.
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In this study, we present a CNN architecture made up of three convolutional modules (each
consisting of a convolution one-dimensional layer, a batch normalization layer, and a ReL.U),
as seen in Figure 2. Subsequently, a fully connected layer was used to accurately learn the
properties of the Sl signal and suppress it from the received signal. The CNN model was trained
with the parameters shown in Table 1.
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Figure -2 CNN structure.
Table 1- Parameters for the proposed systems.
Parameter Value
Input features 2(1 real,1 imaginary)
Activation function ReLU
Optimizer sgdm
Number of epochs 300
Batch size 300
InitialLearnRate 0.1
LearnRateDropFactor 0.1
LearnRateDropPeriod 100
Modulation type QAM
Cyclic Prefix (CP) 2N4:7)
Training SNR 30dB
Loss Function MSE

The anticipated interference from the output of the suggested model is stated as

3:(0) = hy * 2,(D), (4)
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2.3 Interference Cancellation

After forecasting the s;(t) signal with the proposed model, we subtract it from the received
signal y(t), which may be expressed as
y,(&) = s(®) + 5;(t) — §;(¢) +n(®). (5)

Residual SI

where y,(t) represents the signal after cancellation.

3. Results and Discussion

In this section, we present the results of the proposed SIC technique, which was obtained
through a simulation process conducted in MATLAB R2022b, based on the system model
illustrated in Figure 3. The simulations utilized 16 QAM modulation with N=2048. The
performance evaluation includes the criteria presented in Table 2.
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Figure -3 Architectural model of IBFD system.
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Table 2- Evaluation Metrics.

Name Formula
S| suppression capabili Pg;
pp p ty CdB - 10l0g10 <P_),
RSI
MSE 1
MSE =5 619,
i=1
RMSE N
1
RMSE = |55 (=9,
i=1
Accuracy

N,
Accuracy = N
t

where P, stands the power of Sl signal, Pgg; stands the power of residual Sl signal, N stands
the number of samples, y; stands the actual value, §; stands the predicted value, N, stands the
number of correct predictions, and N, stands the total number of predictions. Table 3 compares
the results of the suggested method (CNN) with the traditional Normalized Least Mean Squares
(NLMS) algorithm. The NLMS was configured with a filter order = 50 and a step size = 0.3,
evaluated across various Signal-to-Noise Ratio (SNR) levels. A closer look at Table 3 shows
that the suggested technique outperforms the traditional method significantly.

Table 3- Performance propose vs. traditional methods.

SNR Cds MSE RMSE Accuracy

Propose Method

SNR=0 46.267 2.398e-04 0.0155 99.976
SNR=5 47.303 1.856e-04 0.0136 99.981
SNR=10 48.851 1.3e-04 0.0114 99.987
SNR=15 49.815 1.064e-04 0.0103 99.989
SNR=20 50.994 7.887e-05 0.0089 99.992
SNR=25 51.868 6.408e-05 0.008 99.993
SNR=30 52.492 5.556e-05 0.0075 99.994

Traditional Method
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SNR=0 16.128 0.246 0.496 75.424
SNR=5 16.212 0.239 0.489 76.064
SNR=10 16.317 0.226 0.476 77.399
SNR=15 16.415 0.224 0.473 77.643
SNR=20 16.506 0.222 0471 77.821
SNR=25 16.616 0.217 0.465 78.277
SNR=30 16.749 0.214 0.462 78.563

Furthermore, Figure 4 illustrates the BER curves for the proposal and traditional methods. With
interference, the BER stays high and stable as the SNR raises. Additionally, as shown in Figure
4a, the proposed CNN has a much lower BER compared to the standard cancellation techniques
illustrated in Figure 4b. For instance, at an SNR = 20 dB and when CP = 64, the BER of the
proposed CNN model was 0.002, while the BER of conventional methods equals 0.028. This
demonstrates the CNN’s capability to enhance signal integrity in IBFD systems.
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Figure -4 BER efficiency for our proposal and traditional method (a) CNN (b) NLMS.

Lastly, Figure 5 displays the Sl signal's power spectral density (PSD), the residual signal's
spectrum after cancellations using the traditional method, and the residual signal's spectrum
after cancellations using the suggested method, it is important to note that the spectrum of the
residual Sl signal obtained from the proposed method is lower than that of conventional
methods.
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Figure -5 PSD after SI cancellation.

4. Conclusions

In this paper, we presented a digital SIC method that utilizes CNNs in the IBFD system to
effectively diminish the Sl signal. The proposed method takes advantage of the capability of
CNNs to learn complex nonlinear patterns in interference data to realize improved signal
quality compared to traditional SIC techniques. The obtained results have shown the proposed
CNN-based SIC technique achieves an interference suppression of 52.492 dB, which is
superior to the traditional NLMS algorithm's 16.749 dB at an SNR of 30 dB. Future research
will concentrate on exploring new types of neural network architectures for SIC and
investigating how CNNs are integrated with other techniques to achieve higher levels of
performance of SIC.
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