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Abstract

Bulk numbers are popular for countable dataries, such as inflated zero regression
prototypes. Zero-truncation operations with zero truncation can be effective in
elaborating problems with prototypes numbers of zeros, as the behaviour of zeros in
the datarie s shown may elicit difficulties, when they are solved by zero-truncation
operations on the databases. The different Poisson threshold prototypes that use are
known as the smallest value that gives the shift of the distribution from the normal
regression to the zero inflated regression. This research includes simulated
experiments according to the difference in the sample size (n = 20,50,100) and the
initial values of the Polluted number (A = 1,2,3), inflation parameter (P = 0.1,0.3)
and (Maximum Likelihood Estimation (MLE), Method of Moment Estimation
(MME)) for ZIP with (1000) iterations. The simulation results showed that the inflated
zero parameter was affected with (sample size, the distribution parameter value and
the initial value of the inflated zero parameter). Other estimation methods can be
adopted, including Shrinkage Bayesian and Zero-Inflated Binomial regression
models.

Keywords: Poisson Distribution, Zero Amplified Poisson Model, Zero inflated
Regression, Maximum Likelihood Estimation, Method of Moment Estimation,

Criteria of Minimum Absolute Different, Mean Square Error Criteria.
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1. Introduction

The study of statistical models is crucial for understanding and predicting complex

phenomena, particularly in the field of data analysis and regression modelling. One such area
of interest is the Zero-Inflated Poisson Regression (ZIPR), a statistical method commonly used
to analyse count data characterized by an excess of zero values. However, in real-world
applications, datasets are often susceptible to the presence of polluted or contaminated
observations, which may significantly impact the reliability and accuracy of statistical
models[1].P. Banerjee and et al presented new suggestions to improve the work of LASSO
methods by adapting weights to the data, with the result that these methods demonstrated
excellent ability to determine the final mode[2]. H. Naya and et al compared four ZIP models
(Poisson and Zero) to analyze dark areas in the wool fibers of sheep by applying real data with
simulation data[3].S. Saffari and R. Adnancompared the effect of estimating Zero-inflated
Poisson regression model parameters by comparing complete data and censoring data[4].C.
Fengevaluated and compared the performance of the zero-inflated and hurdle models by
generating and processing simulation data for each[5]. D. Lambertused real data and
simulations that depict defects in manufacturing to demonstrate the effectiveness of the ZIP
model in treating them through the use of the best possible method[6].Classical estimation
methods: maximum likelihood and moment estimation methods are considered among the most
widely applied methods for estimating parameters for distribution systems and others. Many
researchers have relied on them to estimate parameters. In addition nonparametric estimation
of functions and parameters has taken an important role among researchers in applications of
real data studies and simulations[7], [8], .
This research aims to investigate the impact of polluted observations on the performance and
robustness of Zero-Inflated Poisson Regression models. Polluted observations refer to data
points that deviate significantly from the underlying assumptions of the model, potentially
introducing biases and distorting the parameter estimates. This research includes simulation
experiments according to the difference in sample size and initial values of the pollution
parameter for inflation difference factor with two estimation methods.

The following section includes the following (ZAPM), the third section deals with the topic
of (ZIR), while the fourth section includes the MLE and MOM methods for estimating ZIP
parameters, and finally the fifth and sixth sections include simulation experiments and their
results.

2. Zero Amplified Poisson Model (ZAPM)

This model is based on a zero inflation condition according to the Poisson distribution,
According to the following probability mass function [3,4].

Pr(X=0)=P+(1-P e {1>0 (1)

Nie=*

xl-!

The Poisson process of observation (i ) should account for the expectation parameter of the
random variable (x;) when any positive integer greater than zero corresponds to the Poisson
parameter of the Poisson process of observation (i ) as the probability distribution relies on the
positive integer.

The symbol (P) denotes the inflated zero probability, which refers to the probability of an
operation resulting in a variable value equal to zero. The expected value is[9]:

PriX=x;) = (1-P) , X =12, (2)
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2x=1)
=A1(1-P) 2 ¢ (3)

hy = Zx(l -

The mean will be:

py = (1—P)A 4)
The variance will be:
var(x) = E(X?) — (E(X))?
Ex?)=E(x(x—1)) +E(x)
Ax—z -1

E(x(r—1D)=(1-P2 Y x(x—1 o 1)26 5
E@xY)=(1- P)Ax2 +(1=P)A=1-P)A(1+2)

var(x) = (1 = P)A(1 + PA) (5)

= (1-P)A?

3. Zero inflated Regression (ZIR)

Inflated zero regression models are widely used for countable data and particularly popular.
However, the presence of zeros in the observed data can pose challenges for these models. The
number of zeros and non-zeros can be generated through zero-truncation operations, which
involve removing the zeros from the data. The various Poisson threshold models that are used
are referred to as these holding. This term represents the smallest value that causes a shift in
the distribution from a normal regression to a zero-inflated regression.

Let's consider a discrete random variable (X € N) that represents the number of occurrences
in a given experiment. Additionally, let (C) be an indicator that takes a value of either 1 or 0
for a latent category within the conditional distribution. With these considerations, we can
define the Zero-inflated Poisson Regression model (ZIPRM) as follows:

Y
= c~p(y; u.9),c=0,1

The probability mass function (p(y; u. 9)) denotes a function with parameters (u, 9), and there
exists an extra parameter known as the heterogeneity parameter, which can be present in the
negative binomial regression model. The variable (Y) represents the marginal distribution,
making it the dependent variable, and thus the marginal distribution is () [3,4].

fr i) =p(€ = Dp(Y =% =1)+ p(C = 0)p (¥ =5 =0) 6)
let P =p(C =0)
fr;p9) =PI1{y=0}+(1—P)py(y; n.9) (7)

The logarithm of the join functionu, = Ne*" Bwould be:

Log(uo) = Log(N) +x"B (8)
P(a) = h' (wTa)
uB) =g"(x"p) (9)

(P(a)) is a zero-inflated regression parameter and represents the probability corresponding
to zero-inflation.

() is the parameter of distribution.

(u(B)) is the average of the counts in the zero regression is a function of (B).

(Log(N)) is the estimator for (aj)
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4. Estimation of ZIP Parameters

Suppose we have observations of size (n), which are (X;,X,, -+, X,), o that they are all
independent and identically Zero-inflated Poisson distribution with (P,A) parameters that
should be estimated.

4.1 Maximum Likelihood Estimation (MLE) for (ZIP)

LetX = (X;,X,, ..., X, ) be a sample with size (n) distributed as (ZIP) with (P, A) parameters.
Then the likelihood function will be [10,11,12]:
With () represent number of (0) values in (X;) values, then:

n
A
L (P;) - Hp(X = X))
i=1
n X;

LP.A/X) =(P+(1— P)e—l)y 1_[ (1- P)e—/l%

1=1.Xjx0

The logarithm function of likelihood function will be:
Set Eq. (11) and Eq. (12) equal to (0), it Will be give the following:
In(L) =YIn(P+ (1 —P)e™?) + (n—YV)In(1 — P) — (n — Y)A + nXIn(A)

—In <ﬁXi!> (10)

dln(L) —Y(1—P)e™*

nX
A PrA-Per TNt 11)
dln(L) Y PN Y
= —e”)— 12
dP P+(1—P)e—l(1 € ) 1-=P (12)
nX Y(1 = Pyp e~ AMLE-ZIP
_ = ( MLE AZIP) - Y (13)
Avre-zip Purp—zip + (1 — Pypp_zp)e ~AMLE-zIP
Y(1— e_ZMLE—ZIP Y(1— ﬁ B
( WO e "

Pyrg—zip + (1 - ﬁMLE—ZIP)e_zMLE_ZIP
The previous equations are nonlinear then Newton Raphson method is relied upon to obtain
the maximum likelihood estimators.

4.2 Method of Moment Estimation (MME) for ZIP

The method involves determining estimators by equating the sample moments to the
corresponding distribution parameters that need to be estimated [13,14]. This is achieved by
calculating expectations and considering various degrees of the assumed distribution, which
are functions dependent on its parameters. Sample moments will be

—2
fe1 X ?:1(951' _X)

X dS? =
an n—1

By usingeq.(4) X = (1 —P)A
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ip=1-2%
an = 1 ~
- — A—X
By using eq.(5) S*=(1—-P)A(1+P2) =X(1+P1) =X(1+ (T) A)
52 _
—_ = 1 + ). - X
X
A — §?
Amme—zip = X + bl 1 (15)

5?2 N s _
::1+Pﬂ. — :1+P :+X—1
X MME-ZIP (X )

S? s _
:—1:P :+X—1

X X
. $2—-X
Pyme-zip = — 2 _ (16)
S+ (X) —-X

5. Simulation Experiments

In statistics, many researchers use simulation as an alternative system for real data in order
to demonstrate the flexibility and scalability of distributions and others in processing
[15,16,17]. Numerous simulation experiments were conducted to compare the two estimation
methods for the parameters of the inflated Poisson regression model .These experiments were
based on the initial parameters .Polluted number (A = 1,2,3), inflation parameter(P =
0.1,0.3),sample size (n = 20,50,100) ,(Iteration number In =1000). Estimation parameter of

0;i = (AmmEe-z1p » PMME-71P » AMLE-Z1P» PMLE—7Z1P) Will be:

In
~ 1 ~
6=—> 0, (17)
n j=1
Comparing estimators according to:
& = Min(|9; — 6;|) (18)
In
1 ~ 2
MSE, = EZ(QU — 6, (19)
j=1
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Such that (¢; ) represent Criteria of Minimum Absolute Different and (MSE; ) represent Mean
Square Error Criteria.

6. Experimental Results
After carrying out the simulation experiments, we have the following results the 1st
experiment with (P = 0.1), (A = 1,2,3), (n = 20,50,100).

Table 1- the inflation parameter estimators, Minimum Absolute Different, best estimation method for (P =
0.1), (A = 1,2,3), (n = 20,50,100)

A n Poie Porom ¢; Best
1 20 0.198208 0.102681 0.002681 MOM
1 50 0.141866 0.150427 0.041866 MLE
1 100 0.103421 0.100749 0.000749 MOM
2 20 0.124914 0.121532 0.021532 MOM
2 50 0.108943 0.100351 0.000351 MOM
2 100 0.11717 0.130128 0.01717 MLE
3 20 0.173195 0.140144 0.040144 MOM
3 50 0.103764 0.100607 0.000607 MOM
3 100 0.109113 0.100281 0.000281 MOM
0.045
0.04 /\\ /\
0.035 / \ / \
oors |\ [\
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Figure -1 Minimum Absolute Different values for (P = 0.1), (1 = 1,2,3), (n = 20,50,100)

From table (1) and figure (1) we, can show that the best estimation method according to
Minimum Absolute Different criteria for the previous simulation experiment with (P = 0.1),
(A =1,2,3), (n = 20,50,100) for inflation estimator, the best estimation method was (mom)
with (78%) success comparing with (mle)

28



Sumer university journal for Pure Science (SUJPS)
ISSN 2790-7031

Table 2- Mean Square Error with best estimation method for (P = 0.1), (A = 1,2,3), (n = 20,50,100)

2 n MSE,,, MSE,,n, Best
1 20 0.009934 0.000664 MOM
1 50 0.001985 0.010834 MLE
1 100 0.000484 0.00069 MLE
2 20 0.009539 0.000797 MOM
2 50 0.000321 0.000673 MLE
2 100 0.000623 0.000862 MLE
3 20 0.005274 0.000296 MOM
3 50 0.000642 0.000122 MOM
3 100 0.000708 0.000808 MLE
0.0025
0.002
0.0015 /\
0.001 // \
0.0005 \/\\//\\//
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
mom mle mle mom mle mle mom mom mle

Figure -2 Mean Square Error values for (P = 0.1), (A = 1,2,3), (n = 20,50,100)

From table (2) and figure (2), we can show that the best estimation method according to
criteria for the previous (9) simulation experiment with (P = 0.1), (A =
1,2,3), (n = 20,50,100) for inflation estimator, the best estimation method was (mle) with
(56%) success comparing with (mom).

Mean square error
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Table 3- the inflation parameter estimators, Minimum Absolute Different, best estimation method for (P =
0.3), (4 = 1,2,3), (n = 20,50,100)

A n Pie Pmom ¢; Best

1 20 0.346076 0.29685 0.19685 MOM
1 50 0.302091 0.301177 0.201177 MOM
1 100 0.303252 0.30084 0.20084 MOM
2 20 0.446668 0.294896 0.194896 MOM
2 50 0.307123 0.311427 0.207123 MLE
2 100 0.331643 0.300595 0.200595 MOM
3 20 0.341056 0.310792 0.210792 MOM
3 50 0.291395 0.300399 0.191395 MLE
3 100 0.37758 0.300615 0.200615 MOM
0.215

02'(2): FAN / A\
o.19;5 -~ \/ \ /

0.19

0.185

0.18 T T T T T T T T 1
mom mom mom mom mle mom mom mle mom

Figure -3 Minimum Absolute Different values for (P = 0.3), (A = 1,2,3), (n = 20,50,100)

From table (3) and figure (3 we, can show that the best estimation method according to
Minimum Absolute Different criteria for the previous (9) simulation experiment with (P =
0.3), (A =1,2,3), (n = 20,50,100) for inflation estimator, the best estimation method was
(mom) with (78%) success comparing with (mle)
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Table 4- Mean Square Error with best estimation method for (P = 0.3), (A = 1,2,3), (n = 20,50,100)

A n MSE ;.. MSE,om Best

1 20 0.00298 0.000388 MOM
1 50 0.000829 0.000789 MOM
1 100 0.000807 5.41E-05 MOM
2 20 0.021674 0.000471 MOM
2 50 4.32E-05 0.00062 MLE

2 100 0.001169 0.000442 MOM
3 20 0.001944 0.000989 MOM
3 50 0.000567 0.000741 MLE

3 100 0.006131 0.000293 MOM

0.0012

0.0008 /\

0.0006 /\ / \

0.0004 / \ /\ / \

0.0002 \ / / A
R Y4

O T T T T T T T T 1
mom mom mom mom mle mom mom mle mom

Figure -4 Mean Square Error values for (P = 0.3), (4 = 1,2,3), (n = 20,50,100)

From table (4) and figure (4) we, can show that the best estimation method according to
Mean square error criteria for the previous simulation experiment with (P = 0.3), (A = 1,2,3),
(n = 20,50,100) for inflation estimator, the best estimation method was (mom) with (78%)
success comparing with (mle)
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Table 5- the Polluted estimators, Minimum Absolute Different, best estimation method for (P = 0.1), (A =
1,2,3), (n = 20,50,100)

A n Amie Amom {; A
1 20 0.904359 1.001203 0.001203 MOM
1 50 1.115911 1.000486 0.000486 MOM
1 100 1.09792 1.20082 0.09792 MLE
2 20 1.864241 2.205929 0.135759 MLE
2 50 1.744037 2.000659 0.000659 MOM
2 100 1.983185 2.200904 0.016815 MLE
3 20 3.07278  2.399464 0.072/8 MLE
3 50 3.271128 3.000653 0.000653 MOM
3 100 2.673267 3.000501 0.000501 MOM
0.16
0.14
0.12 A

oos /
oor / \ 7\
/ _— \

mom mom mle mle  mom mle mle mom mom

Figure -5 Minimum Absolute Different for Polluted estimators values for (P = 0.1), (A = 1,2,3), (n =
20,50,100)

From table (5) and figure (5) we, can show that the best estimation method according to
Minimum Absolute Different criteria for the previous simulation experiment with (P = 0.1),
(A =1,2,3), (n = 20,50,100) for polluted estimator, the best estimation method was (mom)
with (56%) success comparing with (mle)
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Table 6- Mean Square Error for Polluted estimators with best estimation method for (P = 0.1), (A = 1,2,3),
(n =20,50,100)

A n MSE,,;c MSE,,n BestMet}

1 20 0.009278 0.000387 MOM
1 50 0.013888 0.000864 MOM
1 100 0.009977 0.010029 MLE

2 20 0.018858 9.66E-05 MOM
2 50 0.065827 0.000645 MOM
2 100 0.000591 0.00028 MOM
3 20 0.006116 0.01027 MLE

3 50 0.073604 7.87E-05 MOM
3 100 0.107443 0.00063 MOM

0.012

o A

0.006 / \ A
// \ /\
0.002 2 \/\/ \/

mom mom mle mom mom mom mle mom mom

Figure -6 Mean Square Error values for Polluted estimators for (P = 0.1), (1 = 1,2,3), (n = 20,50,100)

From table (6) and figure (6) we, can show that the best estimation method according to
Mean square error criteria for the previous simulation experiment with (P = 0.1), (A = 1,2,3),
(n = 20,50,100) for polluted estimator, the best estimation method was (mom) with (78%)
success comparing with (mle).
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Table 7- The Polluted estimators, Minimum Absolute Different, best estimation method for (P = 0.3), (1 =
1,2,3), (n = 20,50,100)

A n Ainte Amom {; A
1 20 1.189616 0.993918 0.006082 MOM
1 50 0.983669 1.000784 0.000784 MOM
1 100 0.800062 1.200197 0.199938 MLE
2 20 1.716925 1.993862 0.006138 MOM
2 50 1.740712 2.300238 0.259288 MLE
2 100 2.151285 2.000281 0.000281 MOM
3 20 3.171608 3.402468 0.171608 MLE
3 50 3.043564 3.001276 0.001276 MOM
3 100 3.123115 3.000789 0.000789 MOM
0.3

/A

A [\ A

[\ [\ /

[ N\N] N\ [\
N A VA VA

mom mom mle  mom mle mom mle mom mom

Figure -7 Minimum Absolute Different for Polluted estimators values for (P = 0.3), (A = 1,2,3), (n =
20,50,100)

From table (7) and figure (7) we, can show that the best estimation method according to
Minimum Absolute Different criteria for the previous simulation experiment with (P = 0.3),
(A =1,2,3), (n = 20,50,100) for polluted estimator, the best estimation method was (mom)
with (67%) success comparing with (mle).
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Table 8- Mean Square Error for Polluted estimators with best estimation method for (P = 0.3), (1 = 1,2,3),

(n = 20,50,100)

A n MSE,,;c MSE,,n BestMet}

1 20 0.036085 0.000113 MOM

1 50 0.000523 0.000774 MLE

1 100 0.041085 0.000213 MOM

2 20 0.080533 0.000327 MOM

2 50 0.06807 0.000511 MOM

2 100 0.023235 0.000902 MOM

3 20 0.451352 0.000409 MOM

3 50 0.002137 0.000887 MOM

3 100 0.01566 0.000569 MOM
0.001
0.0009
0.0008 /\ /\
0.0007 / \ / N\
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Figure -8 Mean Square Error values for Polluted estimators for (P = 0.3), (1 = 1,2,3), (n = 20,50,100)

From table (8) and figure (8) we, can show that the best estimation method according to
Mean square error criteria for the previous simulation experiment with (P = 0.3), (A = 1,2,3),
(n = 20,50,100) for polluted estimator, the best estimation method was (mom) with (89%)
success comparing with (mle).

7. Conclusions an

d Suggestions

Upon analysing the outcomes of the simulation experiments, it became evident to us that
the (mom) method outperformed the (mle) method under varying experimental conditions. The
estimations of (polluted estimators) were influenced by the diverse conditions of the simulation
experiments, while the estimations of (inflation estimators) were also influenced by these
conditions. To estimate the pollution parameters of the amplified zero-Poisson regression,
Bayesian and white noise estimators can be employed.
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