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Abstract  

Nonparametric confidence bound estimation is a statistical technique used to 

estimate the probability density function, which works to smooth each point in the 

data of the variable to be studied. Nonparametric confidence intervals define an 

interval containing the core function based on the sample data, which is defined by an 

upper and lower bound. In this research, a comparison was made between the 

nonparametric kernel functions in the case of estimation with nonparametric 

confidence intervals using the plug-in approach method. It was noted that all the 

functions gave good results through the graph in the case of using real data, and the 

best functions were the Epanechnikov and the Tricube functions for estimating the 

kernel function with nonparametric confidence intervals, where the confidence 

intervals were narrow in the graph. 

Keywords:The kernel Function, nonparametric confidence limits, bandwidth 

parameter, plug-in Approch method.  
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 الخلاصة 

  تنعيم   على  تعمل  والتي  الاحتمالية  الكثافة  دالة  لتقدير  تستخدم  احصائية  تقنية  هي  اللامعلمية  الثقة  بحدود  التقدير

  المعتمدة   اللب  دالة  على  تحتوي  فترة  بتحديد  اللامعلمية  الثقة  فترات  تقوم.  دراسته  المراد  المتغير  بيانات  من  نقطة  كل

 حالة   في  اللامعلمية  اللب  دوال  بين  المقارنة  تم  البحث  هذا  في.    وادنى  اعلى  بحدين  تحدد  والتي  العينة  بيانات  على

 نتائج   اعطت  قد  الدوال  جميع  أن  ولوحظ Plug in Approch طريقة  باستخدام  اللامعلمية  الثقة  بفترات  التقدير

  و Epanechnikov دالة هي  الدوال افضل  وكانت حقيقية بيانات  استخدام  حالة في البياني الرسم خلال  من جيده

 .البياني الرسم في ضيقة  الثقة فترات كانت حيث اللامعلمية الثقة  بفترات اللب دالة لتقدير Tricube دالة

 .  Plug-in Approch طريقة,   الحزمة عرض معلمة,  اللامعلمية الثقة حدوددالة اللب ،  : المفتاحية الكلمات
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1. Introduction 

 Many studies and research have examined the estimation of community parameter that are 

usually unknown and through samples are estimated using several statistical methods. It is 

known that estimation has three methods: parametric methods, nonparametric methods, and 

semi parametric methods. There are two ways to estimate parametric: point and confidence 

interval estimation. Confidence intervals can be defined as a range determined by a set of values 

based on sample data, which determine upper and lower limits. Confidence intervals are 

influenced by the sample size; the larger the sample size, the closer it will be to the confidence 

limits because it works to reduce the standard deviation, indicating the efficiency of the 

estimator [1]. The confidence limits have two types: parametric confidence limits and 

nonparametric confidence limits. The parametric confidence limits are defined as the 

recognition of the community's marker from the sample data by setting a period with a set of 

points. An estimate of the nonparametric confidence limits is more difficult because the 

estimate of the nonparametric function is biased, so there will be a problem in measuring the 

bias of the estimation of the function directly [2].    

2. Research Objective  

 The aim of this paper is to use the most important and widespread core functions to estimate 

the nonparametric confidence limits through the use of the core method, which is one of the 

methods of preparation, and thus to compare these functions and indicate their best. 

3. The kernel Function 

 The kernel function of nonparametric estimation has two types: the first is called Kernel 

Optimal, which operates on reducing the Mean Integrated Square Errors (MISE). That is where 

these functions are derived from the MISE for a kernel function [3] . The second type is the 

variance minimum kernel, which works to reduce the corresponding variation. The kernel 

function has several names, including weight function, window function, shape function, or 

core function [4]. The kernel function is defined as a real, similar, limited and continuous 

function, and its integrality is equal to the one. We can find the kernel functions with the lowest 

variation; assume that{𝑥1, 𝑥2,..., 𝑥𝑛} are independent and single-distributed variables and n 

represents sample observations of community x  [5]. 

 

𝑓𝐾(𝑢) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
) … … … … … … … … … … … … … … . . … (1)

𝑛

𝑖=1

 

K indicates the kernel function, and it achieves the following characteristics: 

∫ K(u)du = 1                  

∫ uK(u)du = 0 
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Where u =
x−xi

h
 

And h refers to the bandwidth parameter, which represents a function of the size of the sample 

and has a significant impact on the bias and variation by increasing the preparatory milestone, 

increasing the bias, reducing the variation, and vice versa, thus affecting the degree of 

preparatoryization of the estimate curve [1]. We can find the preface parameter mentioned by 

Silverman by using MISE, which is the most accurate measure [6]. It can be expressed as 

follows  [7]: 

 

𝑀𝐼𝑆𝐸 (𝑓(𝑥)) = ∫ 𝐸 {𝑓(𝑥) − 𝑓(𝑥)} 2𝑑𝑥  … … … … … . . . (2)    

The bandwidth parameter is obtained through the following formula [8]: 

ℎ = 𝑘2
2/5

{∫ 𝑘2(𝑢)𝑑𝑢}
1/5

{∫(𝑓2(𝑥))2 𝑑𝑥}
−1/5

𝑛−1/5   … … … … . . … (3) 

 

4. Selection of Kernel function  

Most scientific studies suggest that the choice of kernel functions is less important than the 

choice of a bandwidth parameter for the performance of densities, where a few kernel functions 

are used. There is a set of kernel functions that belong to the Beta family, which are called 

kernels univariate non-normal, and one of the most famous is (triweight, biweight, 

Epanechnikov, and uniform) [8]. We assume that 𝐾(𝑥) represents a function of real value used 

to determine the local weights of the linear estimate, which refers to a function of real value 

used to determine the local weights of the estimate by fulfilling the requirement∫ 𝐾(𝑥) 𝑑𝑥 =

1, and h refers a bandwidth parameter, so the general formula is [9]: 

 

𝐾(𝑥, 𝛼) =
1

𝐵(0.5, 𝛼 + 1)
(1 − 𝑢2)𝛼    𝐼(|𝑥| ≤ 1)  … … … … … … … . . (4) 

 

Where 𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
   and Γ(𝑎) = (𝑎 − 1)! , such that  𝛼 = 0, 1, 2, 3. 

If  𝑎 = 0, We will gain an uniform function, and if  𝑎 = 1, 2, 3, the Beta function becomes 

are Epanechnikov,  biweight, and triweight respectively. When 𝑎  is big, the function of a 

beta will almost be close to a function Gaussian Kernel [2]. 

Φ(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2   … … … … … … … … … … … … … … … … … … … (5) 
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The most important kernel functions [1, 10] used in this paper are shown in Table 1. 

Table 1- Kernel functions are used 

∫ 𝑘2(𝑢)𝑑𝑢 ∫ 𝑢2 𝐾(𝑢)𝑑𝑢 
K(u) Kernel Shape 

1

2
 

1

3
 

1

2
 𝐼(|𝑢| ≤ 1) 

Uniform 

3

5
 

1

5
 

3

4
(1 − 𝑢2) 𝐼(|𝑢| ≤ 1) 

Epanechnikov 

5

7
 

1

7
 

15

16
(1 − 𝑢2)2 𝐼(|𝑢| ≤ 1) 

Biweight 

350

429
 

1

9
 

35

32
(1 − 𝑢2)3 𝐼(|𝑢| ≤ 1) 

Triweight 

2

3
 

1

6
 

(1 − |𝑢|) 𝐼(|𝑢| ≤ 1) Triangular 

175

247
 

35

243
 

70

81
(1 − |𝑢|3)3 𝐼(|𝑢| ≤ 1) 

Tricube 

1

√2𝜋
 

1 1

√2𝜋
𝑒−

𝑢2

2  
Gaussian 

1

6
 

𝜋2

3
 

1

𝑒𝑢 + 𝑒−𝑢 + 2
 

Logistic 

 

5. Nonparametric Confidence Limits 

This paper uses a plug-in approach to estimate nonparametric confidence limits by 

estimating the nonparametric density function [5]. The process of estimating the nonparametric 

confidence limits is  using a plug-in approach [11], twitches one of the simplest methods of 

estimating the nonparametric confidence limits, where  the corresponding variation is replaced 

by the sign level of 1-∝ and the confidence limits of variable x are: 

𝑝(𝑓(𝑥) ∈ 𝐶1−∝(𝑥) ) = 1 − 𝛼 … … … … … … … … … … … … … . (6) 

Where 𝐶1−∝(𝑥) represents the zone of confidence for the density function is random 

𝐶1−∝(𝑥), it is obtained from sample data, and we have taken a kernel estimate [2]: 

  

𝑓𝑛(𝑥) =
1

𝑛ℎ𝑛
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ𝑛
) … … … … … … … … … … … … … . … (7)

𝑛

𝑖=1

 

The nonparametric confidence limits are calculated according to the following formula: 

𝑝 (𝑓𝑛(𝑥) − 𝑍𝛼
2

∗  𝜎𝑛(𝑥) < 𝑓(𝑥) < 𝑓𝑛(𝑥) + 𝑍𝛼
2

∗  𝜎𝑛(𝑥)) = 1 − α  … … … … … … . (8) 

https://en.wikipedia.org/wiki/Logistic_distribution
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Where : 𝜎𝑛
2(𝑥) ≃

�̂�𝑛(𝑥) ∫ K(u)2  du

𝑛ℎ𝑛
 , and 𝑍𝛼

2
   represents table value by level of statistical 

significance. 

6. Bandwidth Parameter 

Assessment of the best bandwidth parameter is selected by relying on the average Mean 

Integrated Square Error (MISE) and as follows [12]: 

MISE[𝑓(𝑥, ℎ)] = 𝐸 ∫[𝑓(𝑥, ℎ) − 𝑓(𝑥)]
2

𝑑𝑥 … … … … … … … … … … (9) 

 

MISE[𝑓(𝑥, ℎ)] = 𝑣𝑎𝑟 (𝑓(𝑥, ℎ)) + 𝑏𝑎𝑖𝑠𝑒2 (𝑓(𝑥, ℎ)) … … … … … … … (10) 

We take the case of one univariate variable and after the derivative of the variation and 

bias of the kernel function[2]: 

MISE[𝑓(𝑥, ℎ)] = 𝑛−1ℎ−1𝑅(𝐾) +
1

4
ℎ4𝜇2(𝐾)2𝑅((𝑓)2) … … … … … … … . . (11) 

Where: 

𝑅(𝐾) = ∫(𝐾(𝑢))2𝑑𝑢   

𝜇2(𝐾)2 = ∫ 𝑢2𝐾(𝑢)𝑑𝑢 

𝑅((𝑓)2) =  ∫[𝑓′′(𝑢)]2𝑑𝑢 

Then we find a square of  MISE[𝑓(𝑥, ℎ)], and the derivative of h produces: 

ĥMISE = [
𝑅(𝐾)

𝜇2(𝐾)2𝑅((𝑓)2)
] 1/5 … … … … … … … … … … … … … . . (12) 

The final equation is to estimate the bandwidth parameter for a single variable, either in the 

case of multiple variables, the preface parameter is written as follows: 

ĥMISE = [
𝑅(𝐾)

𝜇2(𝐾)2Ψ̂4(𝑔)
]

1/5

… … … … … … … … … … … … … (13) 

7. Practical aspect  

Chronic kidney disease (kidney failure) indicates irreversible deterioration in kidney 

function, which has typically evolved over the years. At first, it only appears to be a 

biochemical anomaly but ultimately leads to a loss of kidney function. Clinical symptoms and 

signs of renal failure are collectively referred to as polyina and often affect people over 65 

years of age. Blood samples were collected from 73 patients with chronic kidney failure treated 

with continuous dialysis. Blood samples were drawn for a group of patients before dialysis was 
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performed, which takes three to four hours in cooperation with the Ibn Sina Educational 

Hospital—the Industrial College Unit, which is between the ages of 20 and 80, with 38 males 

and 35 females. The study included six illustrative variables that are thought to have an impact 

on the response variable, which represents the number of dialysis cycles per month. Table 2 

provides a description of the illustrative variables used in the study.  

Table 2- Description of the variables for patients with kidney failure 

Unit Description of variable Variable 

Years  Age 𝑥1 

Days Period of illness 𝑥2 

mmol/l  Urea concentration  𝑥3 

g/100ml  Total protein concentration 𝑥4 

g/100ml  Albumin concentration 𝑥5 

g/100ml  Globulins concentration 𝑥6 

 

The theoretical part was applied by using the MATLAB package, where nine kernel 

functions were applied at a mental level of 0.05. We estimated the kernel function, given that 

the prep parameter was selected using a plug-in method, and gave the following results, as 

shown in Table 3. 

Table 3- Shows the sum of the pulp function vector and the sum of the upper limit and the lower limit 

lower bound upper bound 𝑓𝑛(𝑥) Kernel Shape 

0.0169  0.0228 0.0198 Uniform 

0.0169 0.0228 0.0198 Epanechnikov 

0.0168 0.0229 0.0198 Quadratic 

0.0168 0.0229 0.0198 Triweight 

0.0171 0.0226 0.0198 Triangular 

0.0170 0.0227 0.0198 Tricube 

0.0167 0.230 0.0198 Gaussian 

0.0177 0.0220 0.0198 Logistic 
 

 Table 3 shows the kernel function used to estimate the kernel density function. We note 

that the shapes of the nonparametric kernel function curves as well as the curve of periods of 

higher and lower confidence using real data show that all kernel functions have yielded good 

results and are close to the kernel function axis as shown in Figure 1. The confidence periods 

for the upper and lower limits were close to the probability density axis. The reason is that the 

size of the sample is large, so the size of the sample affects the axle capacity. If the sample size 

of the axle is large, the axle capacity is close, and if the sample size of the axle is small, the 

axle capacity increases. 
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Figure -1 Nonparametric kernel functions curves 
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8. Conclusions  

 From the practical aspect, the results can be summarized as follows:  

I. All the kernel functions have yielded satisfactory results in estimating the nonparametric 

confidence limits. 

II. The functions were compared with the knowledge of the best function in the figure by 

narrowing the confidence intervals. It was observed that when real data were used, the best 

function was the Epanechnikov function and then the Tricube function. This underscores 

the importance and preference of using nonparametric discretion. 
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