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Abstract

Nonparametric confidence bound estimation is a statistical technique used to
estimate the probability density function, which works to smooth each point in the
data of the variable to be studied. Nonparametric confidence intervals define an
interval containing the core function based on the sample data, which is defined by an
upper and lower bound. In this research, a comparison was made between the
nonparametric kernel functions in the case of estimation with nonparametric
confidence intervals using the plug-in approach method. It was noted that all the
functions gave good results through the graph in the case of using real data, and the
best functions were the Epanechnikov and the Tricube functions for estimating the
kernel function with nonparametric confidence intervals, where the confidence

intervals were narrow in the graph.

Keywords:The kernel Function, nonparametric confidence limits, bandwidth
parameter, plug-in Approch method.
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1. Introduction

Many studies and research have examined the estimation of community parameter that are
usually unknown and through samples are estimated using several statistical methods. It is
known that estimation has three methods: parametric methods, nonparametric methods, and
semi parametric methods. There are two ways to estimate parametric: point and confidence
interval estimation. Confidence intervals can be defined as a range determined by a set of values
based on sample data, which determine upper and lower limits. Confidence intervals are
influenced by the sample size; the larger the sample size, the closer it will be to the confidence
limits because it works to reduce the standard deviation, indicating the efficiency of the
estimator [1]. The confidence limits have two types: parametric confidence limits and
nonparametric confidence limits. The parametric confidence limits are defined as the
recognition of the community's marker from the sample data by setting a period with a set of
points. An estimate of the nonparametric confidence limits is more difficult because the
estimate of the nonparametric function is biased, so there will be a problem in measuring the
bias of the estimation of the function directly [2].

2. Research Objective

The aim of this paper is to use the most important and widespread core functions to estimate
the nonparametric confidence limits through the use of the core method, which is one of the
methods of preparation, and thus to compare these functions and indicate their best.

3. The kernel Function

The kernel function of nonparametric estimation has two types: the first is called Kernel
Optimal, which operates on reducing the Mean Integrated Square Errors (MISE). That is where
these functions are derived from the MISE for a kernel function [3]. The second type is the
variance minimum kernel, which works to reduce the corresponding variation. The kernel
function has several names, including weight function, window function, shape function, or
core function [4]. The kernel function is defined as a real, similar, limited and continuous
function, and its integrality is equal to the one. We can find the kernel functions with the lowest
variation; assume that{x;, x,,..., x,} are independent and single-distributed variables and n
represents sample observations of community x [5].

n
A 1 X — X
fetw = 22> K (57) (1)
i=1
K indicates the kernel function, and it achieves the following characteristics:
jK(u)du =1
qu(u)du =0
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X—Xj

Where u =

And h refers to the bandwidth parameter, which represents a function of the size of the sample
and has a significant impact on the bias and variation by increasing the preparatory milestone,
increasing the bias, reducing the variation, and vice versa, thus affecting the degree of
preparatoryization of the estimate curve [1]. We can find the preface parameter mentioned by
Silverman by using MISE, which is the most accurate measure [6]. It can be expressed as
follows [7]:

MISE (f(x)) = JE{f () - f()} 2dx )
The bandwidth parameter is obtained through the following formula [8]:
1/5 -1/5
h = Kk2/® U kz(u)du} U(fz(x))zdx} n-1/5 (3)

4. Selection of Kernel function

Most scientific studies suggest that the choice of kernel functions is less important than the
choice of a bandwidth parameter for the performance of densities, where a few kernel functions
are used. There is a set of kernel functions that belong to the Beta family, which are called
kernels univariate non-normal, and one of the most famous is (triweight, biweight,
Epanechnikov, and uniform) [8]. We assume that K (x) represents a function of real value used
to determine the local weights of the linear estimate, which refers to a function of real value
used to determine the local weights of the estimate by fulfilling the requirement [ K (x) dx =
1, and h refers a bandwidth parameter, so the general formula is [9]:

K =———(1-u®»* | <1 4
(x,@) B(0.5,a + 1)( w) (xl = 1) S
Where B(a, b) = % andI'(a) = (a—1)!,suchthat « =0,1,2,3.

If a =0, We will gain an uniform function, and if a =1, 2, 3, the Beta function becomes
are Epanechnikov, biweight, and triweight respectively. When a is big, the function of a
beta will almost be close to a function Gaussian Kernel [2].

2

1 x
q)(X) =\/T_ne 2 (5)
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The most important kernel functions [1, 10] used in this paper are shown in Table 1.

Table 1- Kernel functions are used

Kernel Shape K(u) f 2 KW du J k2(w)du
Uniform 1 1 !
— < oy a
Epanechnikov S —u) I(lul < 1) z -
Biweight 2y2
(- < = 5
: %g(l u)*I(lul = 1) Z 3;0
Triweight 23
(11— < = 5o
| 32 (1 u ) I(Iul = 1) 9 429
Triangular A=luDI(ul =1 1 2
Tricube 313 —
(11— < —
81 (1 |u| ) I(IuI > 1) 243 247
Gaussian 1 —“72 1 L
—e 5>—
V2m 21
Logistic 1 m? 1
ete " +2 3 6

5. Nonparametric Confidence Limits

This paper uses a plug-in approach to estimate nonparametric confidence limits by
estimating the nonparametric density function [5]. The process of estimating the nonparametric
confidence limits is using a plug-in approach [11], twitches one of the simplest methods of
estimating the nonparametric confidence limits, where the corresponding variation is replaced
by the sign level of 1-« and the confidence limits of variable x are:

p(f(x) €ECiac(x)) =1 -« (6)

Where C,_(x) represents the zone of confidence for the density function is random
C;—«(x), it is obtained from sample data, and we have taken a kernel estimate [2]:

fu) = %Z k() 7)

The nonparametric confidence limits are calculated according to the following formula:

P (fn(x) ~Zax on(x) <f(2) < fa) + Zax Gn(x)> =1l-a (8)
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£ 2
Where: 62 (x) =~ fn() JKQ? du

nhy,

,and Z« represents table value by level of statistical
2

significance.

6. Bandwidth Parameter
Assessment of the best bandwidth parameter is selected by relying on the average Mean
Integrated Square Error (MISE) and as follows [12]:

MISE[f (x, )] = Ef[f(x, h) — )] dx 9)

MISE[f(x, h)] = var (f(x, h)) + baise? (f(x, h)) (10)
We take the case of one univariate variable and after the derivative of the variation and
bias of the kernel function[2]:

. 1
MISE[f (x,h)] = n"*h 1R(K) + Zh‘*uz(K)ZR((f)Z) (11)

Where:

R(K) = f(K(u))zdu
B0 = [ WK

R = [ GoPau

Then we find a square of MISE|f(x, k)], and the derivative of h produces:

R(K)
2 (K)*R((f)

The final equation is to estimate the bandwidth parameter for a single variable, either in the
case of multiple variables, the preface parameter is written as follows:

FlMISE = [ 2)] /5 (12)

R(K) r/S 3
) (13)

Fl S =l—,\
MISE U (K)2W,

7. Practical aspect

Chronic kidney disease (kidney failure) indicates irreversible deterioration in kidney
function, which has typically evolved over the years. At first, it only appears to be a
biochemical anomaly but ultimately leads to a loss of kidney function. Clinical symptoms and
signs of renal failure are collectively referred to as polyina and often affect people over 65
years of age. Blood samples were collected from 73 patients with chronic kidney failure treated
with continuous dialysis. Blood samples were drawn for a group of patients before dialysis was
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performed, which takes three to four hours in cooperation with the Ibn Sina Educational
Hospital—the Industrial College Unit, which is between the ages of 20 and 80, with 38 males
and 35 females. The study included six illustrative variables that are thought to have an impact
on the response variable, which represents the number of dialysis cycles per month. Table 2
provides a description of the illustrative variables used in the study.

Table 2- Description of the variables for patients with kidney failure

Variable Description of variable Unit
X1 Age Years
Xy Period of illness Days
X3 Urea concentration mmol/I
X4 Total protein concentration g/100ml
X5 Albumin concentration 9/100ml
Xg Globulins concentration g/100ml

The theoretical part was applied by using the MATLAB package, where nine kernel
functions were applied at a mental level of 0.05. We estimated the kernel function, given that
the prep parameter was selected using a plug-in method, and gave the following results, as
shown in Table 3.

Table 3- Shows the sum of the pulp function vector and the sum of the upper limit and the lower limit

Kernel Shape £.(0) upper bound lower bound
Uniform 0.0198 0.0228 0.0169
Epanechnikov 0.0198 0.0228 0.0169
Quadratic 0.0198 0.0229 0.0168
Triweight 0.0198 0.0229 0.0168
Triangular 0.0198 0.0226 0.0171
Tricube 0.0198 0.0227 0.0170
Gaussian 0.0198 0.230 0.0167
Logistic 0.0198 0.0220 0.0177

Table 3 shows the kernel function used to estimate the kernel density function. We note
that the shapes of the nonparametric kernel function curves as well as the curve of periods of
higher and lower confidence using real data show that all kernel functions have yielded good
results and are close to the kernel function axis as shown in Figure 1. The confidence periods
for the upper and lower limits were close to the probability density axis. The reason is that the
size of the sample is large, so the size of the sample affects the axle capacity. If the sample size
of the axle is large, the axle capacity is close, and if the sample size of the axle is small, the
axle capacity increases.
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Figure -1 Nonparametric kernel functions curves
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8. Conclusions
From the practical aspect, the results can be summarized as follows:

All the kernel functions have yielded satisfactory results in estimating the nonparametric
confidence limits.

Il. The functions were compared with the knowledge of the best function in the figure by
narrowing the confidence intervals. It was observed that when real data were used, the best
function was the Epanechnikov function and then the Tricube function. This underscores
the importance and preference of using nonparametric discretion.
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