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Abstract

In this paper, we introduce a new three-parameter of continuous distributions based
on interval [0,1], the Truncated exponentiated Lomax (TEL) distribution, is presented
and studied. Some Probabilistic properties are examined, The cumulative distribution
function, the rth moment, the median, the characteristic function, the hazard rate
function and the reliability function are obtained for the distribution under
consideration. So maximum likelihood estimation is discussed. It is common
knowledge that an object breaks down when the stress it experiences surpasses its
matching strength. Strength can be defined as "resistance to failure™ in this sense. A
strong design always has a strength greater than the anticipated stress. Stress/strength
is a definition of the safety factor in terms of stress and strength.. So, Here, the stress-
strength model for the Truncated Exponentiated Lomax (TEL) distribution will be
generated using various parameters. The Shannon entropy will be obtained.

Keywords: Lomax distribution, exponentiated Lomax distribution, Truncated
exponentiated Lomax distribution, Statistical properties, Stress strength, Shannon
Entropies.

dagal) pailiadd) (any aa jgisall ol (uSla gl 2 g

3@4‘9&}4&9,2&\#&\&9;ﬂeﬁ,*léﬂ\qﬂ-\gﬁ@#
Gl ) U (53, e g daala T il IS il )l a2 ]

Gl B (63 Ay gial) dudll daalall |l (o3 Al AN Rauladl) il o

laval

@Jﬁh\)d}ua):eﬁ}c[oll]EJM\&LU}AQNMLMM@J;HMM‘M\ \JAL_;

oy (oS a sl Al Jie cagall Allaia¥) pailadll (s sl 5, g skl Y1 Sl gl

oG yaadl (s phe Y Sy Allay | o sl pladll Jaee Alla g Al gaall Alla g 3 jpaall Allal) 5 cdass 5l

e 38l )l (S o dnall 13gn s, ALEQN 5 g8l A a ety (A dariall j}\éiehﬁcd‘ﬁ,}}.aicggi

Cay i Sy, @ siall Jarall e ST RS ()5S 8 58 G (8 Bl anenaill il jlaa”, i) A e Ll

a5 Bl gai (adlaiul s a3 8 / dlgal) 4l e 5l 5 dlea) Cua e gV dale
Ol L i) Ay Blad) 8 X Aalina Cilelas e adaialll omax (TEL)

oailadll (el ol (Sl a5 el GSlasl s coSlesl g daliladl clall)
0SSl ) calgal) 5 8 dilasy)

100


mailto:najm.oleiwi@uos.edu.iq

@

Sumer Journal for Pure Science (ISSN: 2790-7031)
2nd International Scientific Conference on Pure and Medical Sciences/University of Sumer 2024

1. Introduction

A random variable T follows a Lomax distribution, denoted T _ L(t), if its cumulative distribution function (cdf)
and probability density function (pdf) are given by [1]

F(t)=1—<1+£)_a t>0,a8 >0 1)

B

£t = ﬁ<1 +£)_(“+1) t>0, aB>0 )
B B

Studies about Lomax distribution have been discussed by several authors. The exponentiated Lomax
geometric (ELG) is introduced by Hassan and Allah [2]. exponentiated Lomax Poisson, Lomax-logarithm, and
extended Lomax Poisson distributions have been given, respectively by Ramos et al. [3]. A new family of
distributions called double Lomax distribution introduced by Bindu and Sangita [4]. beta Lomax, Kumaraswamy
Lomax and McDonald Lomax distributions suggested by Lemonte and Cordeiro [5]. Ghitany et al. [6], introduced
Marshall-Olkin extended Lomax. Extended Poisson Lomax Distribution introduced by Hamed [7].

A random variable T is said to be have an exponentiated distribution, the comulative distribution function (cdf)
and probability density function ( pdf) are provided by:
G(t;0) = H(t)? and g(t;0) = Oh(t)H () *
Suppose that G(t) and g(t) represent the cdf and pdf of the Lomax distribution.

2. The transmuted exponentiated Lomax distribution

A random variable T follows a transmuted exponentiated Lomax (TEL) distribution, the probability density
function (pdf) and cumulative distribution function (cdf) are provided by:

2}

Ga,B; t) = [1 _ ([%+ 1>_a] t> 0,08 >0 3)
g(a,B;t) = %“([5; + 1)_(a+1) [1 - (% 4 1)_a]9_1,t >0,a,8>0 )

2.1 Truncated Distributions

In this section, a new presented truncated transmuted Exponentiated Lomax (TEL) distribution, based on the
interval [0, 1].

Also suppose that G(t) and g(t) are the cdf and pdf of Truncated Exponentiated Lomax distribution on the

interval [0, 1]. So, this is done through the following.
F _G® -6 ;0 1 5
t)r = G =G) <t< ()
_g(@)
f®r= o) (6)

Suppose that G(t) and g(t) in (5) and (6) represent the cdf and pdf of the truncated exponentiated Lomax distribution
that are given in (3) and (4) with three parameters . Then, a new distribution named Truncated Exponentiated
Lomax (TEL) distribution is introduced. The cdf and pdf of are given respectively as
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‘ -a
F(t)m_[l_([?H)a]e 0<t<laf>0 @)
-]
0 F\-@+D) N
f(t)TTELz%(1+F) [1_<1:E) ] ,0<t<1l,a,8>0 (8)

2.2 Reliability Analysis for the TEL Distribution

Utilizing equations (7) and (8), the reliability metrics for the TEL distribution, including the (reliability, hazard,
cumulative hazard and reverse hazard) functions, can be readily computed as follows:

C(ty1)T

$1(OreL =1—-F(O)re=1— % €))
1-(r5p)
ﬁ L —(a+1) ¢ —a16-1

£ = o =L (5+) [2 y - 1,) | (10)

. (g

1-(r45)
—af
§3(OrpL = —In[1 = F()rp] = —In|1 - = (F-;l))a (11)
1+8

§.0)rp = igg:‘z = ( )_('Hl) [1 - < %) “] B (12)

2.3 The rt" Moment of TEL Distribution

The rt* Moment of TEL Distribution can be derived as:

[ee]

E(t )re, = f t" f(0)rg,dO

0

6-1

: jtf o) i) e
i- (m i

Let y=(§+1)=>x_ﬁ(y—1)=>dt_ﬁdy if t-0oy=ladt=12y= (;’3) then
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B+1

0 T
E(t")rg, == Lg f (D71 —y)"y @1 -y 9%y  (13)

[1- (%) |

Since, (1 — y)" can be rewritten (see [8]) as
=y =Y Dk () )t (14)
k=0

Substituting (10) in (9) we get

B+1

P

o — gf Z( e ( )y (@K1 — y=*]%~1dy (15)
-]

Furthermore, [1 — y~%]9~* can be rewritten as (see [8])

[1-y 7 = ZZ,(-D(" )y~ (16)

Substituting (16) in (15) we get

B+1

B
. -1 )
B =aop [ 3 e ()0 ey

1 ki=0

(ﬁ+1)k a(t+1)_1
= a0f" Yii=o(— 1)k+r+L(k)(9 D) k—a(i+1)

Then, E(t") g, will be

) ; (M)k—a(Hl) .,
E()re, = a0 ;0(_1)k+r+i W0 1) = a(i+ 1) n

2.4 The Characteristic Function of the TEL Distribution

Consequently, the "characteristic function" of the TEL distribution is given by,

[oe]

@p(O)TEL = E(e?) g = f e f(t) g dt (18)

0

o (pt)"

Since et =¥ - ——, the ¢, (t)rrg,, in (14) can be rewritten as (see [8])
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(lf,) f®)rrpLdt = Z (lf,) E(t e (19)

@) rrEL = J-i
0

r=0
Where E(t") 5. asin (17).
2.5 Quantile Function

Through inverting the cdf in (7) the quantile function of the TEL distribution can be attained as follows

1

1 B\ \*
=1 (1- ()))
1 B \*
(1= (- (%))
The median of the TEL random variable can be gained from (20) by setting g = 1/2 as:
— 1_
1y9 5\ )
1-(1-Q)"(1- (%) )
1
1 s g \* ‘
[
[0/ -2
By replacing q with u, a random variable that follows TEL distribution can be simulated as:
1
1 a a
1‘(1“’?(1‘(;%) )
1 a
(10t (1 (5))

Where u is an interval-based uniform random number [0, 1].

tg=Q1) =B (20)

QIR

N

(21)

MedianTEL = Q(l/Z) = :8

N————

(22)

tre, = Q(0) =P

QIR

2.6 Stress-Strength Relationship in the TEL Distribution

The two independent, different random variables U STRESS and V strength that follow TEL distribution, Then
the stress-strength ( SSy,.) of the TEL distribution is expressed as follows, [8]:

[oe]

SSTEL = P(Y < Z)TEL = j FU(t)TELfV(t)TELdt (23)
0

Where F;(6) g, considers the cdf of the TEL distribution like in (7) with parameters 8;, a; and 8,as
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£ \—a1191
1-(1+5—

Fy(t) = L) ] p— ] an
[1_ ﬁli1)

(7). Then the stress-strength ( SS;rg,.) can be rewritten as

d fy(t) g, represents the pdf of TTEL distribution with parameters 8, «, and 6 as in

01

N

[ ( P )al]gl f(a, B; t)dt (24)
B Ll Vs
61

Based on the formula (1—w)? = Yo o(-D™(2)u™ lul <1,b>0 see [8], [1 - (1 +BL)_a1] =
1

—aym

Taso(-0"(G) (14+5) T Now

SSrgL = [1 ( a1 gljmi:o( 1)’" ( +[§1>'“1mf(a,ﬁ;t)dt
b1 + 1

w I'(b+i) Ul
i=0 I—-(b)

And so, Based on (1 —u)™? = Y%

,lul <1,b > 0 (see [8],

—aim
(1 _ (—_t)> Ly ST e

p1 Bir(a;m)
S = 3, ey {2 eson
- () ] ’

T A
T \B+1 '

Then, the stress-strength ( SSg,.) of the TEL distribution is given by:

had _1\k+2l+i+mpl —
o [1 ( : )“1]91 m;:()(ﬁfll)"(alm)(a[zillr(jl)n—lz)l) (fn) (9 l 1) (]l‘) =
“mT o

2.7 Shannon Entropy of TEL Distribution

The Shannon entropy SHy,, of TEL distribution can be obtained as [8] E(—In f(t)7z,) Since

Stz =~ 1n(2) <1n<1+§>)_(9 5 (i [1_<1+[_§)‘“])+9m [1_(m)“] """ 2o

Let, [, = E(n(1+5)). b =F(n[1-(1+5) 1
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Now fore, I; = fooo In (1 + %) f©rpLdt

Based on In(1 —u) = —Z‘j‘;o%uf, lu|l < 1 see[8],
() = g D
ln(l (B)>_Zf=° T t/ Now

o (-1 LG L
L = — tfOrpd = ——E(t))
JB Of ; JB

j=0

Based on (17), with r=j we get

had _aNk+2j+i+l _
b= ) “eﬁaﬁ(i)(e ) @7

k,i,j=0
Forl = E (Inf1 - (1 + %)_a]) =1 (1+ %)_“] F()pg,dt
Using on previous formula, we get

i (145) = B (1 £) ™ = 55 20 o

DHr(am+)

Jo t O rpdt = Z?n:oWE(tl) (28)

~DMHIr(am+1)

I; = th:o Blr(am)

Based on (28) and (13), with r = [ we get

d — k+21+i+1 _
" z,h;::o “0 (F (2"1) (a(i i(f)rn—+k;) (Ilc> <9 i 1) (29)

Therefore, Shannon entropy of TEL distribution can be obtained as

SHyg, = —In (%9) +(a+ 1)l — (0 — 1, +6ln [1 - (l%) ] (30)

3. Maximum Likelihood Estimator method (MLE)

Let t = (ty, t, ..., t, be a random sample (r.s.) of size (n) of the TEL distribution, the likelihood function is:

L(a,B;t) =[li=1 f(tis @, B)

6-1

e (1+g) [19_ (3) ] (31

- () |

Then, with regard to B,a, and 6 and equating to zero, the partial derivative for the Log Likelihood function is
carried out. The MLE estimation of B,a, and 0 is indicated by B~ MLE,a” MLE, and 6"~ MLE, and they are as
follows:

L(a,,B; tl) =
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) . n % n (6 — 1)%
= —— 1 P _
BmLE ﬁ+(a+ );<1+%> ;[1_<1+%)—a](1+%>a+1
a-1
v 1) (32)
. 4 B\t (B
G =" —In (1 . E) (o 1)2 : 1:(1 + B) . ne (/3 T 1) In (/3+ 1) 33)
g -0+9) | (-
b =2+ (149 - (L]
i=1

4. Simulation study

The simulation study, In this section, was performed as empirical method to determine the
behavior of the MLEs parameters of the TEL for sample sizes (n = 25, 50, 100), and using the
formulas in (31), (32) and (33) with the default parameter values shown in Table (1,2, ..., 8) with a =
05, B =02, 2 andd = 0.5,2 . The mean square error (MSE) was used as a criterion for comparisons
and evaluations. Using R codes, we obtained the results.

Table -1 empirical estimates (MSE) of the TEL distribution where the parameters:a =0.5, =0.5,0=0.5

Parameters a=05 £=05 6=0.5
n=25 Estimates 0.51319 0.48114 0.53496
MSE 0.03513 0.03286 0.01249

n=50 Estimates 0.50468 0.49098 0.51489
MSE 0.01847 0.01667 0.00549

n=100 Estimates 0.50113 0.49694 0.50908
MSE 0.00910 0.00843 0.00277

Table -2 empirical estimates (MSE) of the TEL distribution where the parameters:a =0.5, §=0.5,06=2

Parameters a=05 £=05 0=2
n=25 Estimates 0.51920 0.47132 2.24629
MSE 0.03680 0.03319 0.29243
n=50 Estimates 0.51268 0.48609 2.11960
MSE 0.01775 0.01672 0.13754
n=100 Estimates 0.50892 0.48958 2.05865
MSE 0.00913 0.00845 0.06113
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Table -3 empirical estimates (MSE) of the TEL distribution where the parameters:a=0.5, §=2,0=0.5

Parameters a=05 r£=2 6=05
n=25 Estimates 0.51546 1.91999 0.52028
MSE 0.03847 0.58022 0.01040

n=50 Estimates 0.50905 1.95391 0.51180
MSE 0.01930 0.29566 0.00491

n=100 Estimates 0.50465 1.97026 0.50863
MSE 0.00957 0.14528 0.00259

Table -4 empirical estimates (MSE) of the TEL distribution where the parameters:a=0.5, §=2,86=2

Parameters a=05 rF=2 6=2
n=25 Estimates 0.52446 1.87437 2.17190
MSE 0.03834 0.58963 0.20332
n=50 Estimates 0.50969 1.95676 2.06652
MSE 0.01926 0.29269 0.08662
n=100 Estimates 0.50882 1.95537 2.05027
MSE 0.00965 0.14615 0.04525

Table -5 empirical estimates (MSE) of the TEL distribution where the parameters:a=2, 8=0.5,0=0.5

Parameters =2 £=05 6=05
n=25 Estimates 2.03554 0.48756 0.53969
MSE 0.45615 0.02938 0.01401

n=50 Estimates 2.02135 0.49498 0.51957
MSE 0.23108 0.01417 0.00664

n=100 Estimates 2.00595 0.49618 0.50752
MSE 0.11483 0.00735 0.00318

Table -6 empirical estimates (MSE) of the TEL distribution where the parameters:a. =2, 8=0.5,0=2

Parameters oa=2 £=05 6=2
n=25 Estimates 2.04466 0.49197 2.23274
MSE 0.42535 0.02559 0.33679
n=50 Estimates 1.99560 0.50129 2.08534
MSE 0.22393 0.01343 0.16122
n=100 Estimates 2.01921 0.49747 2.06502
MSE 0.10621 0.00667 0.08385
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Table -7 empirical estimates (MSE) of the TEL distribution where the parameters:a=2,8=2,0=0.5

Parameters a=2 r£=2 6=05
n=25 Estimates 2.00473 1.90830 0.53943
MSE 0.54401 0.53347 0.01246

n=50 Estimates 2.01484 1.97544 0.52079
MSE 0.27097 0.26614 0.00579

n=100 Estimates 2.01493 1.99791 0.51061
MSE 0.13788 0.13410 0.00280

Table -8 empirical estimates (MSE) of the TEL distribution where the parameters:a =2, §=2,60=2

Parameters a=2 r=2 6=2
n=25 Estimates 2.08280 1.92810 2.25727
MSE 0.53149 0.49443 0.30380
n=50 Estimates 1.99699 1.96748 2.11546
MSE 0.27106 0.25456 0.13555
n=100 Estimates 2.02748 1.98755 2.06883
MSE 0.13785 0.12964 0.07073

m_

f(x)

\
0.0 0.2 0.4 0.6 0.8 1.0

Figure -1 Depict the graphical representation of the probability density function (PDF) of the TEL distribution
with varying parameter values $=0.5, 2, « = 0.5 and 6=0.5, 2.
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Figure -2 Depict the graphical representation of the probability density function (PDF) of the TEL
distribution with varying parameter values 3=0.5, 2, « = 2 and 6=0.5, 2.

For all tables, From the empirical results we can see the following:

7

« As shown for all the tables, we see that the MSE is more accurate when the default values for all
parameters are small for all sample sizes.

«» We notice that there is a direct proportion between the worths of the parameters a, § and the values of
the MSE, that is, when the parameter 6 or § is increased, the value of MSE increases.

«» In general, the values associated with the parameters decrease with increasing sample size. This result is

consistent with the statistics theory.

5. Concluding Remarks

In this research, the Lomax distribution was limited to the period [0, 1] and we noticed that the
transformed distribution (TEL) is more flexible than the original distribution. Also, the most important statistical
properties were found and derived, represented by the rth moment, characteristic function, quantile function,
reliability measures, stress-strength along with Shannon entropy Also, by comparing the default values of the
maximum possibility estimator and the mean square error, it was revealed that there is a direct proportionality
between the two concepts.
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