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Abstract

In this research, linear and nonlinear second-order boundary value problems are
solved, by using exponential spline functions. The suggested method's validity and
applicability are proved by a few numerical findings. The method's results show that

it is both easy to use and efficient.
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1. Introduction

A wide range of issues in the fields of research, technology, and mathematics can be
simplified by resolving systems of equations. This is particularly relevant in tasks such as
modelling and simulating physical systems and verifying and validating engineering designs
[1]. Those boundary value problems (BVPs) using various forms of boundary conditions (BCs)
are effective tools for defining several realistic situations and hence, represent a highly
engaging subject for scholars. The application of mathematical models to represent real-world
problems as systems of boundary value problems (BVPs) is commonly observed in various
fields Topics include dynamics of populations, brine container process, compartments analysis,
pricing of a drug called lid flow of nutrients in aquariums, trains, electrical networks, chemo
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facts, racing hearts, coupled spring-mass structures, timber recording by plane, shaking effects
on properties, aquatic contamination, etc [2]. Many scholars have recently focused on
analyzing second-order systems of boundary value problems (BVPs). Considerable work has
been dedicated to resolving those challenges using numerical means, resulting in
the development of effective and precise methodologies. Geng and Cui [3] examined the
second-order linear and nonlinear systems in the replicating kernel space. Ogunlaran et al. [4]
employed their method to resolve the system of non-linear divergent equations, while Gamel.
[5] and Dehghan et al [6] introduced a sinc-collocation approach to resolve these systems. The
treatment of boundary value problems (BVPs) by employing spline function is a subject of
ongoing research due to its wide variety of implementations and mathematical implications [7].
Spline function-based techniques have effectively simulated them to sets of boundary value
problems (BVPs). Heilat et al. [8] utilized an expanded technique based on cubic B-splines and
resolved the linear instance of the aforementioned problem. Goh and his colleagues [9]
successfully resolved singularity boundary value problems using an improved regular B-spline
polynomials-dependent technique. We consider a non-linear system of second-order boundary
value problems of the form [10], [11]:

@ (1’7)+q1(ﬁ)y“)(fz)+q2(ﬁ)y(ﬁ)+q3(ﬁ)w“)(1’7)+q4(ﬁ)W(ﬁ)+sl(ﬁ.9,W)=r1(17)} 1)
W@ () +p1 (WD @) +p2 (W) +p3 (DI D () +pa )y () +S2 (7,9, W)=r,()) ©

under the given conditions

§(0) = 3(1) = 0,w(0) = w(0) = 0. )

Given functions (7)) and r,(7), where0 < 7j < 1, §;, S, are non-linear functions
ofy and w . are given functions, andgq; (7j), p; (7j)are continuous, i = 1,2,3,4. It is important to
note that the system of second-order boundary value problems (BVPs) we are discussing is
simply a specific instance of the problem (1)-(2) that we expect to encounter. The
comprehensive elucidation on the presence of solutions for these systems may be readily
located in [12], [13] . It is widely believed that within the required time frame, the suggested
system (1)-(2) has just one solution. It is evident that many methods such as replicating kernel,
sinc-collocation, and variational iteration have been proposed to find the solution to the second-
order boundary value problems, for both linear and non-linear instances. In this study, we
present a highly efficient numerical technique based on non-polynomial cubic splines to solve
the given system of equations (1)-(2). Our solution technique relies upon the utilization of an
approach composed of exponentially spline functions. This approach effectively resolves the
purposeful problem at hand. The current technique is formulated using the subsequent function
space:

T5(7) = Span(l, 7, ea’ﬁ)) = Span (1,'7'7, (ecﬁﬁ) — 677))

Here, @ represents the proportion of the non-polynomial functions. If the limit of @
approaches 0, then T;(7j) can be simplified to the span of {1,#,72,#3} [14]. Chaurasia et al.
[15] have examined the current configuration of function space to address the fourth-order
system of boundary value problems, albeit using quintic non-polynomial splines.

Our work has been structured in this manner. In section 2, we have discussed the
implementation of exponential spline technique. The third portion of the document provides a
comprehensive approach to solving a second-order system of boundary value problem. Section
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three includes the resolution of two examples to confirm the feasibility of our devised approach,
accompanied by graphical representations. The study is concluded in Section seven

2-Exponential Spline method

The interval [a, b] is partitioned into n subintervals of equal length by introducing the point
x; = a+ih,i=0,1,2,..,nwhere takes on values from 0 to n. with a = 7j,, b = 7j, and

h = bn;a , Where n is an arbitrary positive integer.

Let y(7j) represent the precise solution, and let $(7j;) be an approximation obtained
through the use of exponential spline E; (7). This spline is constructed to pass through the points
(7i;, y:) and (7i;4+1, ¥i+1- In addition to satisfying the interpolator condition at 7j; and 7j;,4,it is
also required that the first derivative of E;(7j).is continuous at the shared nodes (#j;, ¥;). The
expression E; (7). Is written in the following form:

E;(x) = a;e®T7M) 4 pe= @010 + ¢, (i — #j;) + d;. 3

In the context of function interpolation, exponential spline function E (7j) belonging to
class C?[a, b]is utilized to approximate the values of 9(3) at various points #;,i = 0,1,2, ..., n.
This approximation is influenced by a factor @ and tends towards the ordinary spline E (j)
inside the interval [a, b] as the parameter @ approaches zero.

In order to obtain the formula for the coefficients of the equation (2), it is necessary to
perform a derivation ¥;,9;,4, F; and F;,we first define [3]:

EGit) = 910 Eilied) = Pia » B G = Fry B Giien) = Fian. @
Through the process of algebraically manipulating, the next statement is obtained.

( a4 = hz(—Fi€_9+Fi+1),
2 92(89—8_9)
b, = h?(Fie%—Fiy,)
l 92(69—6_9) 4 (5)
_ —h(Fi41-k?Pi41+k%9;—F))
Ci = 92 )
d' _ (szi—thi)
\ [ 92 .

Where 6 = whandi =0,1,2,...,n.
We will apply the first derivative (ij;, 9;), that is EL) (;) = EX (i7;),gives the following

fori=1,..,n:

~ ~ ~ 0e—9—20e%+e20 =20 _2\p2 0260 _ge—20_p20_p—20 4 5 \p2
Vier =2V + Vi1 = ( 20 ) Fi_q1+2 ( T ) F, +
02(e29+e26-2) 02(e20+e-26-2)

((9e‘9—29e9+e29+e_23—Z)hz)’ ©6)

02(e20+e-260-2)

Which we can write as follows,
Pi—1 — 29; + Piv1) = R [u(Fi—1 + Fip1) + 2AF;] (7)

w(7j) is written in a similar fashion.
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(Wi—1 = 2W; + Wipq) = R*[u(Gioq + Giypq) + 24G,] (8)
Where,

_ (6e9-20ef+e20 12720 -2) _ (0e20—pe=20 20 =20 43)
K= 62(e20+e=26-2) S 02(e20+e=26-2)

3-Application to the second order boundary value problems

In order to demonstrate the practical use of the exponential spline method discussed earlier,
we will examine a nonlinear second-order boundary value problems, as defined in Equation
(1). The suggested second-order boundary value problem in Equation (1) can be discretized at

the grid point (7j;, y;).

y@ (ﬁ)+q1(r;)y(ﬂ(ﬁ)+qz(1‘1)9(1‘1)+q3(ﬁ)w“)(1‘1)+q4<ﬁ)w<ﬁ)+sl<ww>=r1(ﬁ)} 9)
W@ () +p1 (WD ) +p2 (W) +p3 (I D (i) +0a ()P ) +S2 (1,9,W) =12 ()

Substituting F; = @ (x) and G; = w® (43j) in Equation system (5)

Fitqa (D90 +a2 ()9 i+a3 (P +q4 ()W +51 (7,9,9)=71 () } (10)
Gi+pa (WD () +D2 (DWi+p3 (NP +Pa (1) 1+52(1,9,W)=r5 (i)

Solving equation (10) for F; and G; we get

Fi=—q1(ﬁ>y§”—qz(ﬁm—qs(ﬁ)wi“)—q4<fz>wi—sl(w.mm(f;)} (1)

Gi=—P1 (MWD 2 (D P—p3 (D)9 ~pa ()92 (7.9, W)+72 (i)

The following approximations for the first order derivative of y and w in Equation (11) can
be using

() _“Viv1+t4¥i=39iq
yl—l_ 2h
r_Vit1=Vi-1
yi= 2h
y! _3Vi41=4YitVi—1
+1 2
< —W +4,’}}._3". (12)
w! =it TAWiTIWi—g
i—-1— 2h
1_Wit1=Wi_,
wi= 2h
N 3W;, 4 — AW+ W
KWi,+1= i+1 i™Wi-1
2h

So, Equation (12) becomes

Vi+1—Via

Fi = —qy () B2 — g, ()9 () — qG) L= — @, DWGH) — $1Gi 9, W) + 712G (13)

3Vit1—4Yi+¥i1 3Wip—4Wi+W;_q

Fiv1 = =q1(jiv) ==, = ©(1i+0)3i- — @3 ir) =, — @ (i) W; —
S1(ii+ 1, Ve Wir1) + 11 (is1) (14)
. Vi1 +49,-39i- . ~ . Wiy +H4W;—3W;_

Fi_y = —q:({ji-1) s 23,1 i1 q2(Fi—1)Vi-1 — q3(Fji—1) St 2‘:1/ Tl
qa(Ti— ) Wi — S i1, Pivr, Wig1) + 11 (1) (15)

and
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)WL+1 Wi—1

= —p1 (i) =5 — P2 (i) W; — p3 (m)M — P4 — Sz (i, i, W) + () (16)

3Wiy1—4Wi+Wi—y 3Vi41—4Yi+Pi—1

Gis1 = —P1(iv1) — on P2+ 1) Wi — p3(Fiv1) — on Pa(Tiir1)i —

Sy (fiv1 Viv1 Wis1) + 12(fli41) (17)
i 4W;—3W;_ . -~ . -¥i 49;-39;—

Gi-1 = —p1(i—1) —Diet v,\: e p2(Fii—)W; — p3(Fi—1) z +1+23;1 i1

Pa(i—1)Pi — S2(iz1, Piz1, Wi—q) + 12(fli—1) (18)

Substituting equations. (13-15) - (16-18) in equations. (7) and (8) respectively, we find the
following 2(n — 1) linear algebraic equations in the 2(n + 1)unknowns forn = 0,1...,n

'3#q12(:i_1) uq, (i, 1)_|_2/1q1(m) uqlgf:ﬂ)_%] Piy +

:—4uq21£ﬁi_1) 2uq, (i) + ﬂQ1(nl+1)+h2:| 4 [uql(m 1) Zilclzlifﬁi)_waz(:iﬂ)_
1qz (fiv1) — ﬁ] Yit1 t [% #q4(Fi-1) + 21(13(771) ﬂqB;zHl)] Wiq +
-_4Hq23f(:7i—1) —22q.(x;) + 4uq32(;'l71+1)] W+ [uqsgrz; 1) 2/16123:71-) _ 3uq32(:i+1) _

liCI4(xi+1)] Wivr = —uS1(ii—1, Yie1, Wi—1) — 2481 (i, i, Wi) — uS1 (i1, Vivr, Wis1) —

ury (fii—1) + 2Ar (7)) — pury (Xi41) (19)
And,

3up;(Hi-1) . 2Ap1 (7)) (Hi41) 17 ~ —4up;(#i—1) ..
[ees) _ i, ) 4 2000 _ i) _ 1) g [ZaGn) g G 4
4up1(Hiv) | 2] pp1(Hi—1)  24pa()  3upi(Hitq) .. 1]

) . 2] [0 B0 00 i) - 2

3 (“i—) 27 (l) (l ) 4 (l ) ..

[P — i (i) + 2D — KPR, | [ZHESIED) 20, i) +

4 ( i ) ( i— ) 2/1 (1) 3 ("1 )

Hp3 77 +1 ]yl + [HP3 Ni—1 1923h7) _ #1932: +1) llp4(xi+1)] Piv1 =

—#Sz(nz—pyl—p Wi_1) — 228, (T, i, Wi) — Sz (Flig1, iv 1, Wigr) — ura(fi—1) — 24, (7)) —
ury (fiie1) (20)
We need fuor more equationaution.the four end condition can be derivated as follows :

y(0) =9(1) =0,w(0) =w(0) =0 (21)
The method is described in matrix form in the following:

CY =D (22)

Where

Y = 5;0'?1’""yn,WO'Wl'""Wn (23)

Ultimately, the nonlinear system is solved using Maple22 to yield the approximate solution.

4. Numerical examples

In this section, to illustrate our methods we have solved two non-linear system of second-
order boundary value problems. All computations are done by using Maple22.
Example 1. We consider the following equations

YA + VG + 19 ) + wP ) + 2693) + 1 + 23 + 1) cos(#) — m cos (i) —
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 cos(mij) — 7j sin(mij) — (41 — 2112 = 2) =0

w® (i) + w(i) + 2w D () + 229 () — 4x cos(if) — 2(—7j> + ij* +7j + 3) sin(ij)
—(1 —a?)sin(wi) =0

Subject to the boundary conditions:

$(0) =9(1) =0,w(0) =w(0) =0, Where 0<7j<1

The precise solutions are y(7j) = 2(1 —7j) sin#j and w(7j) = sinmij .Equations (22)
yield a system of linear equations for this situation. Table 1 given a comparison of the findings
of the non-polynomial exponential spline function, with the exact solution. The absolute errors
of our technique for n = 10 and along with the findings from [5], [6] using the same number
of points in the interval [0,1] and the exact solutions, are reported in Table 2.

Example 2: Consider the linear system of second-order boundary value problems
YD) + 19 + 20 (H) + 192 () — 27 sin(ip) — (° + 25j* +7j2 — 2) = 0

YOG + w(i) + 7293 + w2 () sin(i) — i3 (1 — ) — sin(wij) (1 + sin(i) sin(rij))
+ mcos(mij) =0

Subject to the boundary conditions
$(0) = (1) = 0,w(0) = w(0) = 0.
Where 0<1j<1

The exact solutions are $(#j) = 7j —7j* and Ww(7j) = sinm7j. In Table 3 presents a
comparison between the results obtained using the non-polynomial exponential spline function
and the exact solution. Table 4 present a comparison between the errors of our technique, using
n = 10, and the method described in reference [5], [6]. Both methods use the same number of
points inside the interval [0,1] and are compared against the exact answers. It is important to
mention that, as far as we know, there is just one publishe d study addressing the solution to
the problem mentioned in this particular paper. The authors of [5], [6] have successfully
demonstrated the existence and uniqueness of the solution for the model provided in this study.
In addition, they incorporated a numerical technique into their research. Therefore, we were
only able to make a comparison between the findings produced from our process and those
acquired from the technique described in reference [5], [6].
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Table 1- Comparison between the exact solutions and proposed method for Example 1

Exact solution

Proposed method

Absolute errors

¢ y(x) w (1) y(x) w(i)) y(x) w(ij)
0.0  0.0000000000 0.000000000 0.0000000000 0.0000000000  0.00000000 0.00000000
0.1  0.1797001500 0.3088655201 0.1797001541 0.3088655211 4.1 x 107° 1.0x 107°
0.2  0.3178709292 0.5875275257 0.3178709273 05875275249  1.9x 107° 8.0x 10710
0.3  0.4137282894 0.8087360606 0.4137282863 0.8087360655  3.1x 107° 49x 107°
0.4  0.4673020108 0.9508594605 0.4673020145 09508594614  3.7x 107° 9.0x 10710
0.5  0.4794255386 0.9999996829 0.4794255390 0.9999996830 4 1x 10710 1.0x 10710
0.6  0.4517139788 0.9513513762 0.4517139771 09513513751  1.7x 107° 1.1x107°
0.7  0.3865306124 0.8096717883 0.3865306136 0.8096717873 1.2 x107° 1.0x 107°
0.8  0.2869424364 05888155620 0.2869424359 05888155651  5.1x 107° 3.1x107°
0.9 0.1566653819 0.3103799097 0.1566653814 0.3103799098 5.1x 10710 1.0x 10710
1.0 0.0000000000 0.000000000 0.0000000000 0.000000000 0.00000000 0.00000000
Table 2- The absolute errors of $(#) and w(7j) for Example 1 with n = 10.
Geng and Cui [5] Dehghan et al. [6] Present method
$ J(x) w (7) () 4G)) J(x) w(ij)
0.08 33x1073 7.7x 1073 32 x1073 2.0x 1073 5.2x 10710 2.6x 107°
0.24 7.7%x1073 2.0x 1072 9.2x107* 9.8x 1073 8.3x 10710 7.5% 107°
0.40 9.7 x 1073 2.7x 1072 2.0x 1073 1.1x 1073 49 x107° 9.1x 10~°
0.56 9.5x 1073 2.7x 1072 2.2x107* 1.4x 1072 6.5x 10710 3.7x 10710
0.72 7.3x 1073 2.0x 1072 4.1x1073 55x 1073 3.8x 107° 8.2x 10710
0.88  3.4x1073 9.4x 1072 1.0 x 1072 7.7x 1072 9.1x 10710 5.4% 10710
096 11x107° 3.1x 1073 2.1x1073 8.3x 1073 2.7%x 107 1.9x 107
Table 3- Comparison between the exact solutions and proposed method for Example 2
Exact solution Proposed method Absolute errors
$ () w (7)) () w(x) y(x) w(ij)
0.0 0.00000000 0.000000000  0.000000000 0.000000000  0.000000000 0.000000000
0.1 0.090000000 0.3088655201  0.0900000012 0.3088655211  0.000000000 1.0x 107°
0.2 0.160000000 05875275257  0.1600000043 0.5875275249  4.3x 10~° 8.0x 10710
0.3 0.210000000 0.8087360606  0.2100000074 0.8087360655 7.4x 10~° 4.9% 107°
0.4 0.240000000 0.9508594605  0.2400000033 0.9508594614  3.3x 107° 9.0x 10710
0.5 0.250000000 0.9999996829  0.2500000008 0.9999996830 80x 10~° 1.0x 10710
0.6 0.240000000 0.9513513762  0.2400000062 0.9513513751 6.2x 10~° 1.1x 107°
0.7 0.210000000 0.8096717883  0.2100000051 0.8096717873 5.1x 10~° 1.0x 107°
0.8 0.160000000  0.5888155620 0.1600000045 0.5888155651  4.5x 10~° 3.1x107°
0.9 0.090000000  0.3103799097 0.0900000000 0.3103799098  0.0000000 1.0x 10710
1.0 0.00000000 0.000000000 0.000000000 0.000000000  0.0000000 0.00000000
Table 4- The absolute errors of §(7j) and w(#j)for Example 2 with n = 10.
Geng and Cui [5] Dehghan et al. [6] Present method
$ y(x) w(ij) y(x) w(ij) Jy(x) w (7))
0.08 80x1073 1.9x 1073 3.0 x107* 2.0x 1073 6.3 x 10710 7.4x 10710
024 19x1073 5.1x 1073 85x 1073 9.8x 107 45x 10710 5.2x 10710
040 24x1073 7.1x 1073 35x1073 1.1x 1073 7.6x 10710 7.5x 107°
056 2.4x1073 6.9x 1073 26x1073 1.4x 1073 3.9x 10710 2.9x 10710
072 1.8x1073 52x107% 2.0x1073 5.5x 107° 5.2x 10710 6.3x 10710
088 80x1073 2.4x 1073 2.6x1073 7.7x107% 8.4x 10710 1.6x 10710
096 2.0x1073 8.0x10™* 26x1073 8.3x 10~* 5.1x 10710 5.9x 10710
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Figure -2 Comparing the numerical solution and exact solution of W (#) in Example 1
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5. Conclusions

This work presents the development of the non-polynomial exponential spline approach for
approximating the solution of second-order boundary value problems in nonlinear systems.
The numerical outcomes acquired through the utilization of the method outlined in this
investigation yield satisfactory results. Our analysis has determined that the numerical findings
approach the exact solution when the value of h approaches zero. The findings depicted in
Figures 1, 2, 3, and 4 demonstrate that as the value of n rose, the greatest absolute error dropped.
The utilization of the spline method has demonstrated its efficacy as a viable approach for
solving systems of boundary value problems.

References

[1] A.G.T.S.H.a.S.S.C.C.Chang, " Quantum annealing for systems of polynomial equations,”
Sci. Rep., vol. 9, no. 1, p. 10258, 2019.

[2] M. M. a. D. Bhatta, "Use of cubic b-spline in approximating solutions of boundary value
problems,” An International Journal (AAM), vol. 10, no. 2, 2015.

[3] E. M. Gamel, "Sinc-collocation Method for Solving Linear and Non-Linear System of Second-
Order Boundary Value Problems,” Applied Mathematics, vol. 3, no. 11, p. 1627-1633, 2012.

[4] O.M.O.a. A T. Ademola, "On the Laplace Homotopy Analysis Method for a Nonlinear
System of Second-Order Boundary Value Problems," General Mathematics Notes, vol. 26, no.
2, pp. 11-22, 2015.

[5] F.G.a. M. Cui, "Solving a Non-linear System of Second Order Boundary Value Problems,"
Journal of Mathematical Analysis and Applications, vol. 327, p. 1167-1181, 2017.

[6] M.D.a. A. Saadatmandi, "The Numerical Solution of a Nonlinear System of Second Order
Boundary Value Problems Using Sinc-Collocation Method," Mathematical and Computer
Modelling, vol. 46, pp. 1434-1441,, 2007.

[71 A.K.M. 1. A.R.K.S.N.a. M. S. O. X.-Z. Zhang, "Cubic spline solutions of the ninth order
linear and non-linear boundary value problems," Alex,” Alex. Eng. J, vol. 61, no. 12, p. 11635—
11649, 2022.

[8] N.N.A.H.a A.l.M.I. A.S. Heilat, "Extended cubic B-spline method for solving a linear
system of second-order boundary value problems," Springerplus, vol. 5, no. 1, p. 1314, 2016.

[9] A.A.M.a. A.l. M. I.J. Goh, "Extended Cubic Uniform B-spline for a Class of Singular
Boundary Value Problems," Science Asia, vol. 37, no. 1, p. 79-82, 2011.

[10] M. D. a. A. Saadatmandi, "The numerical solution of a nonlin—-ear system of second-order
boundary value problems using the sinc-collocation method," Mathematical and Computer
Modelling, vol. 46, p. 1434-1441, 2007.

[11] M. Fazhangeng, "Solving a nonlinear system of second order boundary value problems,"
Journal of Mathematical Analysis and Applications , vol. 327, p. 1167-1181, 2007.

[12] J. H. L. C. a. C. W. S. Chen, "Existence Results for N-Point Boundary Value Problem of
Second Order Ordinary Differential Equations,” ournal of Computational and Applied
Mathematics, vol. 180, no. 2, p. 425-432, 2005.

19



Ahmed R Khlefha SJPS 2024 (August), Vol. 3, No. 1, p.p.:10-20

[13] X. C. a. C. Zhong, "Existence of positive solutions for a second-order ordinary differential
system," J. Math. Anal. Appl., vol. 312, no. 1, p. 14-23, 2005.

[14] H. B. T. a. C. Tisdell, "Boundary value problems for systems of difference equations associated

with systems of second-order ordinary differential equations,” Appl. Math. Lett., vol. 15, no. 6,
p. 761-766, 2002.

[15] P. C. S. Y. G. a. A. B. A. Chaurasia, "Composite non-polynomial spline solution of boundary

value problems in plate deflection theory," Int. J. Comput. Methods Eng. Sci. Mech., vol. 20, no.
5, p. 372-379, 2019.

20



